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Abstract

The scope of this thesis is the theorem prover Darwin, the first
implementation of the Model Evolution calculus, a lifting of the DPLL
procedure to first-order logic developed by Baumgartner and Tinelli.
Darwin provides an initial evaluation of the calculus’ potential and a
clean basis for further improvement.

After the calculus is sketched the proof procedure and the cho-
sen data structures and algorithms are presented, and it is proven
that these constitute a proper instantiation of the calculus preserving
soundness and completeness. Darwin is evaluated against the TPTP
Problem Library and the CASC competition, thereby demonstrating
that for the Bernays-Schönfinkel class Darwin’s performance is on par
with that of the best provers. Finally, promising ideas on how to
improve on the current implementation are pointed out.
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1 Introduction

“I love fools experiments. I am always making them.”

— Charles Darwin

The Davis-Putnam-Logemann-Loveland procedure (DPLL) [DP60,
DLL62] is today the most popular and successful method for building com-
plete SAT solvers due to its simplicity, efficiency, and sophisticated search
heuristics. Theorem provers based on DPLL are able to handle real-world
problems with hundreds of thousands of variables and clauses in contexts like
software verification or description logic and the semantic web.

The FDPLL calculus [Bau00] was the first successful attempt to lift the
DPLL calculus to the first-order level, including the data structures as well
as the inference rules. Thus, an infinite number of inferences in DPLL can
be expressed by a finite number of inferences in FDPLL. The Model Evolu-
tion Calculus (ME) extends and significantly improves on FDPLL [BT03a].
FDPLL and ME are both model generating calculi, i.e. if they prove the
satisfiability of a problem they are able to provide a model. Furthermore,
they are decision procedures—i.e. they always terminate—for the Bernays-
Schönfinkel class, the class of first-order logic which expressed in clause form
corresponds to a clause set with no other function symbols than constant
symbols. This class is of relevance for several application fields including
planning and deductive databases. A hope for ME is to be of practical use
in the above mentioned applications and to improve on DPLL by lifting the
used problem representation to first-order logic.

Darwin is the first implementation ofME and thus an automated model
generating first-order theorem prover. Its scope is an initial evaluation of
the potential of ME by providing an efficient and extensible implementa-
tion. Thus, on one hand, Darwin makes use of and adapts implementation
knowledge developed for DPLL solvers, like first-order equivalents of unit
propagation, subsumption by unit clauses, a (binary) splitting inference rule,
and backjumping and dynamic backtracking to prune the search space. On
the other hand, implementation techniques custom for first-order provers are
employed, like indexing of term sets, term sharing, and dividing the potential
participants for inference rules into an active and a passive part in order to
save on computation and memory.

As ME and Darwin have no special means for handling equality the
performance on this important class of problems is very weak. For problems
without equality the performance is competitive with current provers for the
Bernays-Schönfinkel class, and weak for other problem classes. When applied



1 INTRODUCTION 2

to ground problems Darwin instantiates to a (slow) implementation of the
propositional DPLL procedure.

Darwin should be fairly easy to install and use for anyone accustomed to
Unix and theorem provers, a detailed explanation is provided in the manual
(App. A). After the calculus is sketched (Sec. 2) the proof procedure chosen
for Darwin is presented (Sec. 3), and the implemented data structures and
algorithms are described (Sec. 4). Proofs omitted in the text are given in the
Appendix (App. B). Finally, Darwin’s performance is evaluated (Sec. 5) and
further ideas for improvement are presented (Sec. 6).

Darwin was implemented as a diploma thesis at both the University of
Koblenz and the University of Iowa City under the supervision of Peter
Baumgartner and Cesare Tinelli by Alexander Fuchs.1

1 This paper is an extended and updated version of [BFT04].
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2 The Model Evolution Calculus

“I am turned into a sort of machine for observing facts and grind-
ing out conclusions.”

— Charles Darwin

The Model Evolution Calculus is briefly explained as far as necessary to
understand the implementation details. For a deeper insight into the calculus
see [BT03b].

The Model Evolution Calculus is based on the DPLL procedure, a decision
procedure for the satisfiability of finite sets of ground clauses [DP60, DLL62].
In essence, the procedure works recursively by reducing the problem to two
simpler problems and separately solving them. First, some atom occurring
in the clause set is chosen. Then, the first resp. the second simpler problem
is created by replacing the atom with true resp. false and simplifying the
clause set correspondingly. If this leads to an empty clause set the problem
is satisfiable and the chosen atom assignments give a model. If this leads
to an empty clause reducing the problem further can not lead to a model.
Otherwise, the procedure is restarted for the new simpler problems. If all
reductions are stopped because of an empty clause the problem is proven
unsatisfiable.

The DPLL procedure can be described by means of a sequent-style cal-
culus [Tin02], as incrementally modifying a default interpretation towards
a Herbrand model for a given clause set Φ or showing that all alternative
modifications do not yield a model. The ME calculus can be seen as lifting
this model evolution process to the first-order level. It is an instantiation
based calculus, as it proves the satisfiability of a first-order clause set by
constructing a model consisting of instances of literals from the clause set.

This is achieved by maintaining the context Λ, a finite set of (possibly
non-ground) literals. Λ is a finite representation of a Herbrand interpretation
IΛ, serving as a candidate model for Φ. The rules of the calculus manipulate
sequents of the form Λ ` Φ. In the initial sequent Λ stands for a default
interpretation, e.g. assigning false to all atoms, and Φ for the input clause
set. If IΛ is not a model of Φ the main derivation rules modify Λ step by
step so that IΛ becomes a model, or they detect that Λ is unrepairable and
fail. If possible backtracking occurs and a different derivation is attempted,
otherwise unsatisfiability of Φ has been detected. The optional rules serve
the purpose of simplifying Φ and Λ and thus potentially speeding up the
computation.

In order to formulate the derivation rules we need to introduce a few
technical preliminaries first.
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2.1 Technical Preliminaries

We denote literals, that is, atomic formulas or negated atomic formulas, in
general by the letters K, L. We denote by L the complement of a literal L.
As usual, a clause is a disjunction L1 ∨ · · · ∨ Ln of zero or more literals. We
denote clauses by the letters C and D and the empty clause by �. We will
write L ∨ C to denote a clause obtained as the disjunction of a (possibly
empty) clause C and a literal L. When convenient, with a slight abuse of
notation, we will treat a clause as the set of its literals. A Horn clause is
a clause containing at most one positive literal. A unit clause is a clause
consisting of exactly one literal.

The calculus employs two kinds of variables, a set X of universal variables
(variables, denoted by x, y, z), and a set V —disjoint with X— of parametric
variables (parameters, denoted by u, v, w). A literal containing parameters
is called parametric, a parameter-free literal is called universal. Universal
literals stand for all their ground instances, parametric literals stand only for
a non-empty subset of all their ground instances, i.e. at least one instance
and possibly all instances.

We fix a signature Σ throughout the paper. We denote by Σsko the expan-
sion of Σ obtained by adding to Σ an infinite number of (Skolem) constants
not already in Σ. By Σ-term (Σsko-term) we mean a term of signature Σ
(Σsko) over X ∪ V . In the following, we will simply say “term” to mean a
Σsko-term. If t is a term we denote by Var(t) the set of t’s variables and
by Par(t) the set of t’s parameters. We extend the above notation and
terminology to literals and clauses in the obvious way.

We adopt the usual notion of substitution over Σsko-expressions or sets
thereof. We also use the standard notion of unifier and of most general unifier.
We will denote by {w1 7→ t1, . . . , wn 7→ tn} the substitution σ such that
wiσ = ti for all i = 1, . . . , n and wσ = w for all w ∈ X ∪ V \ {w1, . . . , wn}.
Also, we will denote by Dom(σ) the set {w1, . . . , wn} and by Ran(σ) the set
{w1σ, . . . , wnσ}.

If σ is a substitution and W a subset of X ∪ V , the restriction of σ to W ,
denoted by σ|W is the substitution that maps every w ∈ W to wσ and every
w ∈ (V ∪ X) \W to itself. A substitution ρ is a renaming on W ⊆ (V ∪ X)
iff ρ|W is a bijection of W onto W . For instance {x 7→ u, v 7→ u, u 7→ v} is a
renaming on V . Note however that ρ is not a renaming on V ∪ X as it maps
both x and v to u. We call a substitution simply a renaming if it is a renaming
on V ∪ X. We call a substitution σ parameter-preserving , or p-preserving
for short, if it is a renaming on V . Similarly, we call σ variable-preserving
if it is a renaming on X. Note that a renaming is parameter-preserving iff
it is variable-preserving. For example, the renaming {x 7→ y, y 7→ x, u 7→
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v, v 7→ u} is both variable- and parameter-preserving, where the renaming
{x 7→ v, v 7→ x} is neither variable-preserving nor parameter-preserving.

If s and t are two terms, we say that s is more general than t (or s
subsumes t), and write s & t, iff there is a substitution σ such that sσ = t.
We say that s is a variant of t, and write s ≈ t, iff s & t and t & s or,
equivalently, iff there is a renaming ρ such that sρ = t. We write s � t
if s & t but s 6≈ t. We say that s is parameter-preserving more general
than t, and write s ≥ t, iff there is a parameter-preserving substitution σ
such that sσ = t. When s ≥ t we will also say that t is a p-instance of s.
Since the empty substitution is parameter-preserving and the composition
of two parameter-preserving substitutions is also parameter preserving, it is
immediate that the relation ≥ is, like &, both reflexive and transitive. We
say that s is a parameter-preserving variant, or p-variant, of t, and write
s ' t, iff s ≥ t and t ≥ s; equivalently, iff there is a parameter-preserving
renaming ρ such that sρ = t.2 We write s  t if s ≥ t but s 6' t. Note that
both ' and ≈ are equivalence relations.

All of the above about substitutions is extended from terms to literals in
the obvious way. A clause K1 ∨ · · · ∨Kn subsumes a clause L1 ∨ · · · ∨ Lm if
there is a unifier σ such that for each literal Ki there is a literal Lj such that
Kiσ = Lj.

A Skolemizing substitution is a substitution θ with Dom(θ) ⊆ X that
replaces each variable in Dom(θ) by a fresh Skolem constant and every re-
maining element of X ∪ V by itself. A Skolemizing substitution for a lit-
eral L (clause C) is a Skolemizing substitution θ with Dom(θ) = Var(L)
(Dom(θ) = Var(C)). We write Lsko (Csko) to denote the result of applying
to L (C) some Skolemizing substitution for L (C).

A (Herbrand) interpretation I is a set of ground Σsko-literals that contains
either L or L, but not both, for every ground Σsko-literal L. Satisfiability
of literals and clauses in I is defined as usual. The interpretation I satisfies
(or is a model of) a ground literal L, written I |= L, iff L ∈ I; I satisfies a
ground clause C, iff I |= L for some L in C; I satisfies a clause C, iff I |= C ′

for all ground instances C ′ of C; I satisfies a clause set Φ, iff I |= C for all
C ∈ Φ in C. The interpretation I falsifies a literal L (a clause C) if it does
not satisfy L (C). Sometimes we will also say that a clause C is valid in I
to mean that I |= C.

Definition 2.1 (Context) A context is a set of the form {¬v} ∪ S where
v ∈ V and S is a finite set of literals each of which is either parameter-free

2 Note that we could have just as well defined s to be a variable-preserving variant of
t when sρ = t for some parameter-preserving renaming ρ. The reason is that, as observed
above, parameter preserving renamings are also variable-preserving, and vice versa.
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or variable-free.

Where L is a literal and Λ a context, we will write L ∈≈ Λ if L is a variant
of a literal in Λ, will write L ∈' Λ if L is a p-variant of a literal in Λ, and
will write L ∈≥ Λ if L is a p-instance of a literal in Λ.

Definition 2.2 (Contradictory) A literal L is contradictory with a con-
text Λ iff Lσ = Kσ for some K ∈' Λ and some p-preserving substitution σ.
A context Λ is contradictory iff it contains a literal that is contradictory with
Λ.

We will work only with non-contradictory contexts.

Example 2.3 Let the context Λ be {¬v, p(u),¬p(a), q(u, a),¬q(a, u)}. Then
¬p(v), p(a), q(x, y), and ¬q(x, y) are contradictory with Λ, while ¬p(b),
q(a, a) and ¬q(a, a) are not.

Definition 2.4 (Most Specific Generalization) Let L be a literal and Λ
a context. A literal K is a most specific generalization (msg) of L in Λ iff
K & L and there is no K ′ ∈ Λ such that K � K ′ & L.

Definition 2.5 (Productivity) Let L be a literal, C a clause, and Λ a
context. A literal K produces L in Λ iff

1. K is an msg of L in Λ, and

2. there is no K ′ ∈≥ Λ such that K � K ′ & L.

The context Λ produces L iff it contains a literal K that produces L in Λ.

Example 2.6 Let Λ = {¬v, p(u),¬p(a), q(u, a),¬q(a, u)}. Then p(b),
¬p(a), q(b, a), q(a, a), ¬q(a, a), ¬q(a, b) and ¬q(b, b) are produced by Λ, while
¬p(c) and ¬q(b, a) are not.

Note that ¬q(b, b) is produced by the pseudo-literal ¬v. Its presence
ensures that every context Λ produces at least L or L for every literal L.

Definition 2.7 (Induced interpretation) Let Λ be a non-contradictory
context. The interpretation induced by Λ, denoted by IΛ, is the Herbrand
interpretation that satisfies a positive ground literal L iff L is produced by Λ.

Note that if either L or ¬L is produced by a context then the produced
literal is satisfied by the interpretation. But if both L and ¬L are produced
then only the positive literal is satisfied by the interpretation. Thus, ¬v
provides an initial default interpretation for every literal that can be modified
later on by extending the context.
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Example 2.8 Let Λ = {¬v, p(u),¬p(a), q(u, a),¬q(a, u)}. Then except for
¬q(a, a), the same literals as listed as produced in Example 2.6 are also part of
the interpretation, i.e. p(b), ¬p(a), q(b, a), q(a, a), ¬q(a, b) and ¬q(b, b). As
q(a, a) as well as ¬q(a, a) are produced by IΛ only the positive literal q(a, a)
is true in the interpretation.

Definition 2.9 (Context Unifier) Let Λ be a context and

C = L1 ∨ · · · ∨ Lm ∨ Lm+1 ∨ · · · ∨ Ln

a parameter-free clause, where 0 ≤ m ≤ n. A substitution σ is a context
unifier of C against Λ with remainder Lm+1σ ∨ · · · ∨ Lnσ iff there are fresh
p-preserving variants K1, . . . , Kn of context literals such that

1. σ is a most general simultaneous unifier of {K1, L1}, . . . , {Kn, Ln},

2. for all i = 1, . . . ,m, (Par(Ki))σ ⊆ V ,

3. for all i = m + 1, . . . , n, (Par(Ki))σ 6⊆ V .

The context unifier σ is admissible iff for all distinct i, j = m+1, . . . , n, Liσ
is parameter- or variable-free and Var(Liσ) ∩ Var(Ljσ) = ∅.3 Furthermore,
σ is productive iff Ki produces Liσ in Λ for all i = 1, . . . , n.

That is, a context literal generates a remainder literal if one of its pa-
rameters is bound to a non-parameter. In particular, ¬v always generates a
remainder literal.

Example 2.10 Let Λ = {¬v, p(u), q(u, w)} and p(x) ∨ ¬q(x, y) be a clause
from Φ. Some possible context unifiers (with x, y universal, u, v, w parametric
as usual) are σ1 = {v 7→ p(x), u 7→ x, w 7→ y}, σ2 = {v 7→ p(x), x 7→ u, w 7→
y}, and σ3 = {v 7→ p(x), x 7→ u, y 7→ w}. Then, the context unifier σ1 has the
remainder p(x) ∨ ¬q(x, y), which is not admissible as x occurs in more than
one remainder literal, the context unifier σ2 has the remainder p(u)∨¬q(u, y),
which is not admissible as a remainder literal contains both variables and
parameters, and the context unifier σ3 has the admissible remainder p(u).
None of these remainders is productive as ¬v does neither produce p(x) nor
p(u) in Λ, that is not ¬v but the context literal p(u) is the msg of p(x) resp.
p(u) in Λ.

The existence of a productive admissible context unifier of a context Λ
and a clause shows that the interpretation induced by Λ falsifies the clause.
This is detected by the derivation rules, which try to “repair” the context if
possible, i.e. to extend Λ so that it represents a model for the clause.

3 A yet unpublished enhancement of the calculus allows for remainder literals of ad-
missible context unifiers to contain parameters and variables.
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2.2 Derivation Rules

The derivation rules of the calculus are described below. Split, Assert, and
Close are the main rules which evolve the context, Subsume, Resolve, and
Compact are optional simplification rules. Except for Compact all rules are
direct first-order liftings of the rules of the DPLL calculus and reduce to
those rules when the input clause set is ground.

Split
Λ ` Φ, C ∨ L

Λ, Lσ ` Φ, C ∨ L Λ, (Lσ)
sko ` Φ, C ∨ L

if (∗)

where (∗) =


C 6= �,

σ is an admissible context unifier of C ∨ L against Λ

with remainder literal Lσ,

neither Lσ nor (Lσ)
sko

is contradictory with Λ

Split is the only non-deterministic rule of the calculus. As mentioned
above, the existence of an admissible context unifier σ of C ∨ L against Λ
indicates that IΛ falsifies (C ∨L)σ. The left conclusion of the rule tries to fix
this problem by adding to the context a literal Lσ from σ’s remainder. The
alternative right conclusion—needed for soundness in case the repair on the
left turns out to be unsuccessful—adds instead the skolemized complement

of Lσ. The addition of (Lσ)
sko

prevents later splittings on L but leaves
the possibility of repairing the context by adding another of σ’s remainder
literals. When the rule is applicable, we call Lσ a split literal.

Note that the calculus is still sound and complete if only productive
context unifiers are considered. This modified version of the Split rule is
employed by default in Darwin.

Assert
Λ ` Φ, C ∨ L

Λ, Lσ ` Φ, C ∨ L
if



σ is a context unifier of C against

Λ with an empty remainder,

Lσ is parameter-free and

non-contradictory with Λ,

there is no K ∈ Λ s. t. K ≥ Lσ

If Assert is applicable, the only way to find a model for the clause set
based on the current context or any extension of it is to satisfy every ground
instance of Lσ. This is enforced on the context by adding Lσ to it. Appli-
cations of Assert are highly desirable in practice because i) they constrain
further changes to the context, thereby limiting the non-determinism caused
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by the Split rule, and ii) they potentially cause more applications of the three
simplification rules below. When the rule is applicable, we call Lσ an assert
literal.

Subsume
Λ, K ` Φ, L ∨ C

Λ, K ` Φ
if K ≥ L.

Subsume is an optional rule that simplifies Φ by removing clauses which
are satisfied by Λ and any extension of Λ.

Resolve
Λ ` Φ, L ∨ C

Λ ` Φ, C
if


there is a context unifier σ of L

against Λ with an empty remainder

such that Cσ = C

Resolve is an optional rule that simplifies Φ by removing from clauses in Φ
those literals which are contradictory with Λ and any extension of Λ. Resolve
is the only rule that is not implemented in its full generality in Darwin. It
is only applied for the special case in which there is a K in Λ s.t. K is
p-preserving more general than L.

Compact
Λ, K, L ` Φ

Λ, K ` Φ
if K ≥ L.

Compact is an optional rule that simplifies Λ by removing literals from Λ
if there are other p-preserving more general literals in Λ.

Close
Λ ` Φ, C

Λ ` �
if


Φ 6= ∅ or C 6= �,

there is a context unifier σ of C against Λ

with an empty remainder

Close detects that a context falsifies the clause set and cannot be modified
in order to satisfy it. This implies that backtracking has to occur and if
possible a left Split has to be replaced by its right Split. A context unifier
with an empty remainder is called a closing context unifier.



2 THE MODEL EVOLUTION CALCULUS 10

2.3 Derivation Tree

Derivations are defined in terms of derivation trees, where a node corresponds
to a rule application and its children to the rule’s conclusions. Split as the
only non-deterministic rule introduces two children nodes, every other rule
introduces only one child node.

Definition 2.11 (Derivation Tree) A derivation tree is a labeled tree in-
ductively defined as follows:

1. a one-node tree is a derivation tree iff its root is labeled with a sequent
of the form Λ ` Φ, where Λ is a context and Φ is a clause set;

2. A tree T′ is a derivation tree iff it is obtained from a derivation tree
T by adding to a leaf node N in T new children nodes N1, . . . , Nm so
that the sequents labeling N1, . . . , Nm can be derived by applying a rule
of the calculus to the sequent labeling N . In this case, we say that T′

is derived from T.

Definition 2.12 (Open, Closed) A branch in a derivation tree is closed
if its leaf is labeled by a sequent of the form Λ ` �; otherwise, the branch
is open. A derivation tree is closed if each of its branches is closed, and it is
open otherwise.

Definition 2.13 (Derivation) A derivation is a possibly infinite sequence
of derivation trees (Ti)i<κ, such that for all i with 0 < i < κ, Ti is derived
from Ti−1.

For a given input clause set Φ derivations are started with the sequent
¬v ` Φ in the root node.

2.4 Correctness

In this section the definitions and propositions concerning the soundness and
completeness of the calculus are given. For full details including all proofs
see [BT03b].

Proposition 2.14 (Soundness) For all sets Φ0 of parameter-free Σ-
clauses, if Φ0 has a refutation tree T, then Φ0 is unsatisfiable.

Each derivation D in the Model Evolution calculus determines a limit tree
wrt. to all the derivation trees in D.
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Definition 2.15 (Limit Tree) Let D = (Ti)i<κ be a derivation, where
Ti = (Ni,Ei) for all i < κ. We say that

T := (
⋃
i<κ

Ni,
⋃
i<κ

Ei)

is the limit tree of D.

Fair derivations in the ME calculus are defined in terms of exhausted
branches.

Definition 2.16 (Exhausted branch) Let T be a limit tree, and let B =
(Ni)i<κ be a branch in T with κ nodes. For all i < κ, let Λi ` Φi be the
sequent labeling node Ni. The branch B is exhausted iff for all i < κ all of
the following hold:

(i) For all C ∈ ΦB, if Split is applicable to Λi ` Φi with selected clause C,
productive context unifier σ such that K ∈ ΛB for every context literal
K of σ, then there is a remainder literal L of σ and a j ≥ i with j < κ
such that Λj produces L but Λj does not produce L.

(ii) For all unit clauses L ∈ ΦB, if Assert is applicable to Λi ` Φi with
selected clause L, selected literal L and an empty context unifier, then
there is a j ≥ i with j < κ such that for any literal K with L ≥ K, Λj

produces K but Λj does not produce K.

(iii) For all C ∈ ΦB, Close is not applicable to Λi ` Φi with selected clause
C and any context unifier σ such that K ∈ ΛB for every context literal
K of σ.

(iv) Φi 6= {�}.

Definition 2.17 (Fairness) A limit tree of a derivation is fair iff it is a
refutation tree or it has an exhausted branch. A derivation is fair iff its limit
tree is fair.

Theorem 2.18 (Completeness) Let Φ be a parameter-free clause set, and
let D be a fair derivation of Φ with limit tree T. If T is not a refutation
tree, then Φ is satisfiable; more specifically, for every exhausted branch B of
T, IΛB

is a model of Φ.

Thus, a derivation terminating with a closed derivation tree is a proof of
the unsatisfiability of Φ. An exhausted branch, i.e. a branch to whose leaf
no derivation rule applies, is a proof of the satisfiability of Φ, and its context
denotes a model for the clause set.
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3 Proof Procedure

“A scientific man ought to have no wishes, no affections,—a mere
heart of stone.”

— Charles Darwin

Similar to the DPLL procedure, Darwin’s proof procedure basically corre-
sponds to a depth-first, or more precisely an iterative-deepening exploration
of a derivation tree of the calculus. At any moment, the procedure stores a
single branch of the tree.

The procedure grows a branch until

• the branch can be closed, in which case it backtracks to a previous Split
decision and regrows the branch in the alternative direction, or

• the branch cannot be grown further, which means that a model of the
input set has been found, or

• a depth bound is reached, in which case the procedure restarts from
the beginning, but with an increased depth bound.

Currently, the depth bound is imposed on the term depth, i.e. the depth
of terms seen as trees. Only literals obeying the depth bound are added to
the context, see Step 1 below and Section 4.2.

3.1 Main Loop

It is necessary to introduce some more terms to explain the backtracking
mechanism embedded in the proof procedure. As sketched in Section 2.3
branching only happens when a left resp. right Split is applied, i.e. the
application of the left or right conclusion of the Split rule. Every other rule
merely extends the current branch by adding one new child node.

Definition 3.1 (Choice Point) A choice point is created by a left resp.
right Split. The literals associated with a choice point are the creating split
literal and the subsequently asserted literals up to but excluding the next literal
split on.

Thus, a choice point corresponds to the part of the branch initiated by
the non-deterministic Split and extended by subsequent applications of the
other—deterministic—rules.

Backtracking takes dependencies between choice points into account.
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Definition 3.2 (Choice Point Dependency) A context literal (directly)
depends on the choice point with which the literal is associated. A context
unifier (directly) depends on the choice points with which the context literals
used in the context unifier are associated. A choice point (directly) depends
on the choice points on which its associated literals depend (the choice point
itself included).

Usually, this relation is meant to be the transitive closure, i.e. a con-
text literal does not only depend on its choice points, but also on its choice
points dependencies, and so on. Then, the relation is simply called “depends”
instead of “directly depends”.

The set of choice points on which a context unifier resp. a choice point
depend is called its explanation. The explanation of a given explanation is
the union of the explanations of all its choice points. Unions of explanations
are called explanations as well.

In addition to the current context and the potentially simplified clause
set the procedure maintains a set of candidate literals.

Definition 3.3 (Candidate Literal) A candidate literal is a literal which
has been computed as applicable to Assert resp. Split at some point. A candi-
date literal is valid if it is applicable to Assert resp. Split wrt. to the current
context.

Note that an initially valid candidate literal might become invalid due to the
evolution of the context, i.e. it might be subsumed by or be contradictory
with the new context, the corresponding context unifier might not be pro-
ductive anymore, or it might exceed the current term depth bound. After
the application of a derivation rule all new candidate literals are computed
and added to the candidate set. Before entering the main loop the candidate
set is initialized with all the literals that could be added to the initial context
by an application of Assert, i.e. the unit clauses from the given clause set.

The main loop of Darwin’s proof procedure consists of the following steps:

1. Candidate Selection

If there is no valid candidate obeying the depth bound in the candidate
set the current branch is exhausted (Def. 2.16). If furthermore no
candidate has been dropped because of the depth bound the problem is
proven satisfiable and the procedure ends returning the current context,
which denotes a model of the input clause set. Otherwise, the branch
is only exhausted under the current depth bound and therefore the
procedure is restarted with an increased depth bound.
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But if there are valid candidates one is chosen based on the selection
heuristics described in Section 4.3. The heuristics is based on various
measures but it always prefers assert candidates over split candidates
in order to minimize the creation of choice points.

2. Context Evolution

The selected literal is added to the context by means of Assert or Split.
For a split literal this implies the creation of a choice point.

3. Context Unifier Computation

All context unifiers of current clauses and the new context involving
the new context literal are computed. If this leads to the computation
of a closing context unifier the current branch is immediately closed,
forcing the procedure to backtrack.

4. Simplification

With the new context literal fixed as the selected literal Compact is
exhaustively applied to the new context, and Subsume and Resolve are
exhaustively applied to the current clause set.

5. Backtracking

If a closing context unifier was found in the previous step the current
context does not satisfy the input clause set and is unrepairable. The
procedure backtracks to a previous choice point created by a left Split,
undoing all changes to the context and the clause set that depend on
that choice point. Then, the corresponding right Split is applied and
the computation continues with Step 2.

If there are no more choice points to backtrack to the input set is proven
unsatisfiable and the procedure quits.

6. Candidate Generation

If no closing context unifier is found in Step 3, the procedure extracts
from each computed context unifier the best literal suitable for an ap-
plication of Assert or Split, and adds it to the candidate set. This
is sufficient to represent all remainders according to Proposition 3.5.
Finally, the procedure continues with Step 1.
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3.2 Fairness

The iterative-deepening scheme over a term depth bound sketched above
and described in more detail in Section 4.2 ensures the fairness, and hence
refutational completeness of the proof procedure.

Proposition 3.4 (Fairness) Iterative deepening over the term depth of
candidate literals ensures a fair derivation.

Proof. The only rules adding literals to the context, Assert and Split, have as a
precondition that the literal to be added to the context is not p-subsumed by
a context literal. The only rule removing literals from the context, Compact,
does only remove literals which are p-preserving instances of other context
literals. Thus, literals removed by Compact can not be readd by Assert or
Split, and there are no p-variants of a literal in the context. As for a certain
depth bound there exists only a finite number of different terms wrt. to
p-variants that do not exceed the depth bound, this implies that there is an
upper bound for the context size and only finite many applications of Assert
resp. Split are possible.

According to Definition 2.17 proving fairness corresponds to showing that
the limit tree of the derivation is fair, i.e. that the limit tree is a refutation
tree or has an exhausted branch. This amounts to checking the following
four items as given in Definition 2.16:

(i) Let Split be applicable to the sequent Λi ` Φi and an admissible context
unifier σ with the productive remainder C. As the proof procedure
computes and considers all valid remainder literals obeying the depth
bound, and there are only finite many applications of Split possible,
all literals of C are eventually considered for application. That is, all
literals with the exception of remainder literals which are not valid, but
those are not needed to be considered for a fair derivation, and with
the exception of remainder literals exceeding the depth bound.

(ii) analog to (i)

(iii) As all context unifiers are exhaustively computed and checked for
an empty remainder a branch is closed as soon as possible by Close
(Step 3), and Close can not be applicable to an open branch.

(iv) Φi 6= {�} can only be computed if the initial clause set contains � or
a clause is simplified by Resolve to �. The former case is considered
to be a special case and is caught before the procedure is started. The
latter case implies that a unit clause L has been resolved by a context
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literal K to an empty clause. But this implies that there is a closing
context unifier between K and L and Close has not been triggered. As
the procedure checks for each new context literal first the applicability
of Close (Step 3) and only then of Resolve (Step 4) this is not possible.

From this, and in particular (iii) and (iv), it follows immediately that a
refutation tree is built if it is constructible within the depth bound. Thus,
the proof procedure is fair within the depth bound.

As a refutation tree constitutes a fair derivation the computation of a
refutation tree by the procedure is always a fair derivation, independently
from the depth bound. But, if the proof procedure terminates with an open
branch this is only an exhausted branch if no candidate literal has been
dropped because of the depth bound. Assume that the current depth bound
is m and a candidate literal L has been dropped because its depth was
n > m. Then (i) or (ii) of the requirements for an exhausted branch are not
met. But this is detected by the proof procedure which is restarted with the
new depth bound k > m (Step 1). Obviously, if L continues to be dropped
and no refutation tree is found the depth bound will finally be increased to
the depth n and now L will be considered.

Therefore, due to iterative deepening the procedure computes a fair limit
tree iff one exists. ut

From this and Theorem 2.18 follows the completeness of the proof proce-
dure.

The procedure remains fair and thus complete, even though as described
in Step 6 of the proof procedure not the whole remainder but only one re-
mainder literal is kept and considered for Split.

Proposition 3.5 A fair procedure is still fair if instead of each remainder
literal merely at least one literal of each remainder is considered for Split
applicability

Example 3.6 Say, the clause p(x)∨q(x, a) is unified with the context literals
¬p(u),¬q(b, v). The only context unifier σ is {x 7→ b, u 7→ b, v 7→ a} yielding
the remainder p(b) ∨ q(b, a). Let q(b, a) be the selected remainder literal, i.e.
the one considered for Split. Now, if σ becomes non-productive the remainder
is of no further interest. But, if σ is still productive and q(b, a) becomes
contradictory with the context, it must be ensured that p(b) is finally produced
by the context.

Now, say the literal ¬q(b, y) is added to the context, which is contradictory
with q(b, a) with the unifier τ = {y 7→ a}. Then, the context unifier of p(x)∨
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q(x, a) and ¬p(u),¬q(b, y) is θ = {x 7→ b, u 7→ b, y 7→ a}, which is exactly σ
without the bindings to variables from ¬q(b, v), i.e. {v 7→ a}, composed with
τ . The new remainder p(b) of θ consists solely of the remainder literals of σ
except for the selected remainder literal q(b, a). Thus, p(b) will be the selected
remainder literal of τ , to the same effect as if p(b) were now the new selected
literal of σ.

3.3 Pseudocode

A straight-forward and easy way to implement the above described main
loop is a recursive version using naive chronological backtracking. For sake
of simplicity this approach is used in the first high-level pseudocode descrip-
tion given below. Furthermore, the restarting part is also omitted. If the
procedure terminates it either returns a set of literals, representing the most
recent context and denoting a model of the input clause set, or the string “un-
satisfiable”, denoting that the clause set is unsatisfiable. The pseudo-literal
¬v is used as the first chosen candidate literal.

chronological
1 function init( Φ)
2 // input: a clause set Φ
3 // output: ”unsatisfiable” or a set of literals encoding a model of Φ
4 let Λ = ∅ // the context
5 let L = ¬v // initial (pseudo) literal used to extend Λ
6 let CS = assert literal set consist. of unit clauses in Φ // candidate set
7 try
8 me( Φ, Λ, L, CS)
9 catch CLOSED->

10 exit with "unsatisfiable"
11

12 function me( Φ, Λ, K, CS)
13 let Λ′ = Λ ∪ {K} simplified by Compact with K
14 let Φ′ = Φ simplified by Subsume with K
15 if ∃ closing context unifier between Φ′ and Λ′ then
16 raise CLOSED
17 else
18 let CS′ = valid_candidates ( Λ′, CS) ∪ new_candidates ( Φ′, Λ′, K)
19 if CS′ = ∅ then
20 exit with Λ′ // Λ′ encodes a model of Φ′

21 else
22 let Φ′′ = Φ′ simplified by Resolve with K
23 let L = the best candidate in CS′ wrt. to the heuristics
24 if L is an assert or unit split literal then
25 me( Φ′′, Λ′, L, CS′ \ {L}) // Assert L
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26 else
27 try
28 me( Φ′′, Λ′, L, CS′ \ {L}) // left Split on L
29 catch CLOSED->
30 me( Φ′′, Λ′, L

sko
, CS′ \ {L}) // right Split on L

31

32 function valid_candidates ( Λ, CS)
33 returns all candidates in CS that are valid wrt. the context Λ
34

35 function new_candidates ( Φ, Λ, L)
36 returns based on the context unifiers between Φ and Λ involving L
37 all (valid) assert literals and one split literal from each remainder

The actual implementation is more complicated due to dependency-
directed backtracking (Sec. 4.4.6). In the backjumping version, a more intel-
ligent form of chronological backtracking, the exception CLOSED would also
carry dependency information, in form of an explanation. This is information
is used to decide whether to do a right Split or to ignore it and to continue
with backtracking instead.

Next, the pseudocode for dynamic backtracking is presented, a signifi-
cantly more complex non-recurse non-chronological version with dependency
handling. Note that the simplifications of the clause set and the candidate
set done in the chronological version do not carry over. Now, backtrack-
ing does not backtrack to old immutable versions of the context, the clause
set, and the candidate set, but instead modifies and keeps the current data
structures. Again, the handling of the restart is omitted.

In the following the term choice point is abbreviated by cp, context literal
by cl, and context unifier by cu.

non-chronological
1 function init( Φ)
2 // input: a clause set Φ
3 // output: ”unsatisfiable” or a set of literals encoding a model of Φ
4 let Λ = ∅ // the context
5 let L = ¬v // initial (pseudo) literal used to extend Λ
6 let CS = assert literal set consist. of unit clauses in Φ // candidate set
7 let ACP = ∅ // the most recent choice point
8 let CP = ∅ // the choice points except for ACP
9 let XP = ∅ // the explanation of the applied closing cus

10 me( Λ, L, CS, ACP , CP , XP )
11

12 function me( Λ, K, CS, ACP , CP , XP )
13 let Λ′ = Λ ∪ {K}
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14 if ∃ closing context unifier σ of Φ and Λ′ then
15 backtrack ( Λ′, CS, CP ∪ {ACP}, XP ∪ the explanation of σ)
16 else
17 let CS′ = CS ∪ new_candidates ( Λ, K)
18 if no valid candidate in CS′ then
19 exit with Λ′ // Λ′ encodes a model of Φ′

20 else
21 let L = the best candidate in CS′ wrt. to the heuristics
22 if L is an assert or unit split literal then
23 me( Λ′, L, CS′ \ {L}, ACP ∪ L, CP , XP ) // Assert L
24 else
25 me( Λ′, L, CS′ \ {L}, {L}, CP ∪ {ACP}, XP ) // left Split on L
26

27 function backtrack ( Λ, CS, CP , XP )
28 let RCP = the most recently created choice point in XP
29 let ICP = the transitive closure of the choice points based on RCP
30 let CP ′ = CP\ICP // choice points to keep
31 let XP ′ = XP\ICP
32 let Λ′ = the literals associated with the cps in CP ′

33 let CS′ = ( CS ∪ the literals associated with the cps in ICP )
34 restricted to candidates whose cus depend solely on cps from CP ′

35 if RCP is the initial choice point then
36 exit with ‘‘unsatisfiable’’ // no split to undo left
37 else if RCP corresponds to a right split then
38 backtrack ( Λ′, CS′, CP ′, XP ′) // try previous choice point
39 else
40 let L = the split candidate of RCP

41 let ACP = {L sko} // create a new choice point

42 me( Λ′, L
sko

, CS′, ACP , CP ′, ACP ∪ XP ′) // right Split on L
43

44 function new_candidates ( Λ, L)
45 let Λ′ = Λ ∪ {L} simplified by Compact
46 let Φ′ = Φ simplified by Subsume with Λ ∪ {L} and Resolve with Λ
47 returns based on the context unifiers between Φ and Λ involving L
48 all (valid) assert literals and one split literal from each remainder

3.4 Example

The examples demo satisfiable.tme and demo unsatisfiable.tme in-
cluded in the test subdirectory of the source distribution are explained in
detail along the non-chronological pseudocode version in order to demon-
strate the working of the proof procedure. More on these can be found in the
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manual (Sec. A.5). A choice point is represented by its associated context
literals. Let Φ be the clause set from demo satisfiable.tme:

r(a) ∨ r(f(a)) (1)
s(x) ∨ t(x) (2)

p(f(x)) ∨ q(f(x)) ∨ ¬r(a) (3)
p(f(x)) ∨ ¬q(f(x)) (4)
q(f(x)) ∨ ¬p(f(x)) (5)
¬q(f(x)) ∨ ¬p(f(x)) (6)

Upon starting the procedure with init(Φ) all variables are initialized with
their default values. The initial candidate set CS is empty as Φ contains no
unit clause. Therefore, the derivation is started with me(∅,¬v, ∅, ∅, ∅, ∅).

There is no empty context unifier, and ¬v with clause 1 and clause 2
yields the new split literals r(a) selected from the remainder r(a) ∨ r(f(a))
and s(u) selected from the remainder s(u) ∨ t(u). As r(a) is ground and
s(u) is parametric r(a) is preferred and the left split me({¬v}, r(a), {s(u)},
{r(a)}, {{¬v}}, ∅) is done. This gives the following derivation tree, candidate
set, and explanation for closing context unifiers used to close branches. The
initial Assert on the pseudo-literal ¬v is omitted from the derivation tree for
conciseness.

+r(a)

Candidate Set:
{s(u)}

Explanation:
{}

Again, there is no empty context unifier and new candidates({¬v}, r(a))
is executed. Φ is simplified to Φ′ by excluding clause 1 as it is subsumed
by r(a), and by replacing clause p(f(x)) ∨ q(f(x)) ∨ ¬r(a) with clause
p(f(x))∨ q(f(x)) as ¬r(a) is resolved by r(a). Note that although according
to the pseudocode this is only a local simplification, which has to be redone
for each invocation of new candidates, it is of course more efficiently, i.e. in-
crementally, handled in the actual implementation. The only new candidate
is p(f(v)) from clause 3 with ¬v and r(a) yielding CS ′ = {p(f(v)), s(u)}.

As s(u) has a lower term weight than p(f(v)) it is preferred and split
on, which does not lead to new candidates. Thus p(f(v)) is split on next,
yielding together with ¬v and clause 5 the new unit split candidate q(f(w)).4

4 See Section 4.4.2 on Unit Split.
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+r(a)

+s(u)

+p(f(v))

Candidate Set:
{q(f(w))}

Explanation:
{}

The unit split me({p(f(v), s(u), r(a), ¬v}, q(f(w)), ∅, {q(f(w)), p(f(v))},
{{s(u)}, {r(a)}, {¬v}}, ∅) computes a closing context unifier σ with clause
6 and the context literals q(f(w)) and p(f(v)).

The explanation of σ is the explanation of its context literals, i.e. of
q(f(w)) and p(f(v)). These are associated with the choice point {q(f(w)),
p(f(v))}. The choice point’s dependencies are in turn based on the depen-
dencies of its literals. As the context unifier for p(f(v)) used the context
literals ¬v and r(a) it directly depends on the choice points {r(a)} and {¬v}.
Likewise, q(f(w)) directly depends on the choice points {¬v} and {q(f(w)),
p(f(v))} because of p(f(v)) and ¬v. As r(a) as well as ¬v only depend on
the choice point {¬v} the fix point is reached and the explanation of σ is
computed as {{q(f(w)), p(f(v))}, {r(a)}, {¬v}}.

+r(a)

+s(u)

+p(f(v))

+q(f(w))

Candidate Set:
{}

Explanation:
{{q(f(w)), p(f(v))}, {r(a)},
{¬v}}

Backtracking is started with backtrack({q(f(w)), p(f(v), s(u), r(a),¬v},
∅, {{q(f(w)), p(f(v))}, {s(u)}, {r(a)}, {¬v}}, {{q(f(w)), p(f(v))}, {r(a)},
{¬v}}. The most recent choice point in the closing explanation RCP is
{q(f(w)), p(f(v))}. The set of choice points to retract ICP contains solely
RCP as no choice point depends on RCP . The still valid choice points
CP ′ are {{s(u)}, {r(a)}, {¬v}}, and the closing explanation XP ′ is {{r(a)},
{¬v}}. The new context Λ′ is {s(u), r(a), ¬v}. The new candidate set CS ′

is extended by the literals from ICP , i.e. q(f(w)) and p(f(v)), and then im-
mediately restricted to {p(f(v))}, as q(f(w)) depends on the retracted choice
point RCP . As the retracted RCP choice point was a left split on p(f(v)) the
derivation is continued with the right split me({s(u), r(a),¬v}, {¬p(f(v))},
∅, {¬p(f(v))}, {{s(u)}, {r(a)}, {¬v}}, {{¬p(f(v))}, {r(a)},{¬v}}).
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+r(a)

+s(u)

+p(f(v)) -p(f(v))

+q(f(w))

Candidate Set:
{}

Explanation:
{{r(a)}, {¬v}}

Now, ¬p(f(v)), ¬v, r(a) compute with clause 3 the unit split candi-
date q(f(w)), whose assertion leads to a closing context unifier σ between
¬p(f(v)), q(f(w)) and clause 4. The explanation of σ is obviously analogous
to the previous one and backtracking is started with backtrack({q(f(w)),
¬p(f(v), s(u), r(a),¬v}, ∅, {{q(f(w)),¬p(f(v))}, {s(u)}, {r(a)}, {¬v}},
{{q(f(w)),¬p(f(v))}, {r(a)}, {¬v}}.

+r(a)

+s(u)

+p(f(v)) -p(f(v))

+q(f(w)) +q(f(w))

Candidate Set:
{}

Explanation:
{{q(f(w)), −p(f(v))}, {r(a)},
{¬v}}

RCP is {q(f(w)),¬p(f(v))}, ICP does again contain only RCP , and
CP ′, XP ′, Λ′, and CS ′ are the same as in the previous backtracking. But
this time RCP is a right split, and thus backtracking continues with back-
track({s(u), r(a), ¬v}, {p(f(v))}, {{s(u)}, {r(a)}, {¬v}}, {{r(a)}, {¬v}}).

+r(a)

+s(u)

+p(f(v)) -p(f(v))

+q(f(w)) +q(f(w))

Candidate Set:
{p(f(v))}

Explanation:
{{r(a)}, {¬v}}

Now RCP is {r(a)}, ICP is {{r(a)}}, CP ′ is {{s(u)}, {¬v}}, XP ′ is
{{¬v}}, and Λ′ is {s(u),¬v}. The candidate set CS ′ does not contain p(f(v))
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anymore as it is dependent on r(a), which is no longer part of the context.
Instead, CS ′ contains only r(a).

As {s(u)} does not depend on {r(a)} it is not retracted and still part
of CP ′, and s(u) is still part of the context. This is the crucial difference
between backjumping, i.e. chronological backtracking, and the here employed
dynamic backtracking, i.e. non-chronological backtracking, Although s(u)
has been split on after r(a) this split remains valid even though r(a) has
been undone. This corresponds to a reordering of the derivation branch
by moving s(u) above r(a) and pretending that this has been the case for
the whole derivation. As RCP is a left split the derivation goes on with
me({s(u), ¬v}, {¬r(a)}, ∅, {¬r(a)}, {{s(u)}, {¬v}}, {{¬r(a)}, {¬v}}).

+s(u)

+r(a) -r(a)

+p(f(v)) -p(f(v))

+q(f(w)) +q(f(w))

Candidate Set:
{}

Explanation:
{{¬r(a)}, {¬v}}

There is no closing context unifier and the only new candidate is the
assert candidate r(f(a)) from clause 1 and ¬r(a). After asserting it with
me({¬r(a), s(u), ¬v}, {r(f(a))}, ∅, {r(f(a)), ¬r(a)}, {{s(u)}, {¬v}},
{{¬r(a)}, {¬v}} there is neither a closing context unifier nor are there new
candidates. Thus, the problem has been proven satisfiable and the interpre-
tation of the final context {r(f(a)), ¬r(a), s(u), ¬v} induces a model.

+s(u)

+r(a) -r(a)

+p(f(v)) -p(f(v))

+q(f(w)) +q(f(w))

+r(f(a))

Candidate Set:
{}

Explanation:
{{¬r(a)}, {¬v}}

But if the formula r(a) ∨ ¬r(f(a)) were also part of the clause set, i.e.
the new clause set corresponds to the example demo unsatisfiable.tme, a
closing context unifier against it would be computed with the context literals
r(f(a)) and ¬r(a). Backtracking would be started with backtrack({r(f(a)),
¬r(a), s(u), ¬v}, ∅, {{r(f(a)), ¬r(a)}, {s(u)}, {¬v}}, {{r(f(a)), ¬r(a)},
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{¬v}}. The right split ¬r(a) would be undone and the backtracking contin-
ued with backtrack({s(u), ¬v}, ∅, {{s(u)}, {¬v}}, {{¬v}}).

This time RCP is {¬v}, i.e. the initial choice point. This is no real
choice point as it mereley contains ¬v and possible asserted literals from
unit clauses, i.e. it does not represent a non-deterministic decision. Thus,
all branches of the derivation tree are closed, the clause set has been proven
unsatisfiable, and the procedure terminates with “unsatisfiable”.

+s(u)

+r(a) -r(a)

+p(f(v)) -p(f(v))

+q(f(w)) +q(f(w))

+r(f(a))

Candidate Set:
{}

Explanation:
{{¬v}}

Note that the right Split on s(u) need not to be applied in order to com-
pute the refutation tree. This is due to the dependency directed backtracking
based on the explanations of closing context unifiers. In fact, the choice point
s(u) can be removed from the derivation, yielding a complete refutation tree
in which each left Split is paired with the corresponding right Split.
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4 Implementation

“It is not the strongest of the species that survive, nor the most
intelligent, but the one most responsive to change.”

— Charles Darwin

In the following it will be described on a more technical level how the
proof procedure given above is instantiated in Darwin. The implemented
techniques aiming at improving the performance and reducing the memory
consumption are presented in the corresponding sections. These are mostly
well known and widely used in first-order theorem provers, though some are
specific to Darwin.

4.1 Programming Language

Darwin is implemented in OCaml5. OCaml is—among other things—a
fast strongly-typed functional language based on ML. OCaml —and thus
Darwin— is available for several Unix-like operating systems including Linux
and Mac OS X, and for the Windows family.

OCaml has previously been successfully used for the implementation of
the theorem prover KRHyper6 at the University of Koblenz and for the solver
ICS7 at SRI International.

Though—or because—my programming background was mostly in PERL
and OO-style C++, I quickly enjoyed using OCaml. Among other things
OCaml’s strong-typing, garbage collection, extremely short compile times,
and informative news group made up for the paradigm shift. At the current
stage of development I find that the higher level of abstraction provided by
OCaml constructs—and thus the better readability and maintainability of
the code, compared to e.g. C —amply compensate for possible performance
losses due to for instance OCaml’s automatic memory allocation discipline.

4.2 Iterative Deepening

As described in Section 3.1 the proof procedure is embedded in iterative-
deepening over the term depth of the candidate literals. Therefore, if the
procedure terminates with an open branch but has dropped any candidates
due to the depth bound the procedure is restarted with the lowest depth of all

5 See http://caml.inria.fr/
6 See http://www.uni-koblenz.de/~wernhard/krhyper/
7 See http://www.icansolve.com/

http://caml.inria.fr/
http://www.uni-koblenz.de/~wernhard/krhyper/
http://www.icansolve.com/
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dropped candidate literals. Otherwise, an open branch denotes satisfiability
of the problem and a refutation tree unsatisfiability.

An obvious benefit of this mechanism is that potentially many candidate
literals with high term depths are dropped. Especially for problems with
models and refutation trees constructed using only comparatively shallow
terms but creating lots of candidates with deeper terms this vastly decreases
the memory requirements.

No information from a previous round is kept after a restart. An improve-
ment might be to learn and keep permanent lemma clauses as a side effect
of derivations, as can be commonly found in SAT solvers. Unfortunately,
it is not clear yet how to properly lift this mechanism to first-order in Dar-
win. Recomputing dropped candidates and continuing the current derivation
instead of restarting might also be a valuable alternative. This yields a dif-
ferent derivation than a restart, though. After increasing the depth bound
assert candidates might become available after some split candidates have
already been applied, while with restarting the assert candidates might have
been available and thus applied before those split candidates were processed.
Testing showed that this does not improve the performance of the calculus
in general but merely results in an increase in code complexity.

Alternative bounds for the iterative deepening process could be used as
well. For instance, the hyper tableau prover KRHyper [Wer03] uses iterative
deeping over term weights, which are computed as the number of symbols
in a term. Other provers limit the derivation tree length, i.e. the maximum
length of a derivation branch. These two alternatives have been tested only
very shortly in an ad-hoc implementation. The first results seemed not too
favorable compared to the term depth bound and are due to lack of time not
pursued for the time being.

4.3 Heuristics

Here, the techniques are presented which do not aim at a general improve-
ment of the implementation performance, but are specifically meant to guide
the proof procedure to produce a short derivation. Firstly, this is the candi-
date selection, i.e. which candidate literal should be chosen to be added to
the context, and secondly, the default interpretation of the context, i.e. if by
default all atoms are considered to be false or true in the induced interpre-
tation.
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4.3.1 Candidate Selection

As sketched in Section 3 at any point in the derivation all candidate literals
are known. Thus, the candidate selection heuristics can employ full knowl-
edge of every possible extension of the calculus by means of Assert and Split.
Corresponding to unit propagation in the DPLL procedure [ZS96], assert lit-
erals are always preferred to split literals. Among assert resp. split literals a
lexicographic ordering is induced by the following criteria with “Universality”
being the most significant criterion, and “Generation” the least significant
one.

1. Universality

Universal literals (which includes ground literals as well) are preferred
to parametric literals as they impose stronger constraints on the con-
text. Furthermore, as soon as the context contains parameters the
number of computed remainders and thus split candidates might in-
crease significantly. E.g. p(x) is preferred to p(a) or p(u).

As assert literals are always universal this criterion is only useful for
split literals.

2. Remainder Size

Recall that in order to find a proof for a satisfiable problem every
remainder must be satisfied, i.e. at least one literal of each remain-
der must be produced by the context. Because right splitting on a
remainder literal leads to the computation of a new shorter remain-
der (Lem. B.1), candidate literals originating from smaller remainders
are preferred over literals from larger remainders. The intention is to
constrain the number of choices and minimize backtracking. E.g. a
literal from the remainder p(x) ∨ q(x) is preferred to a literal from
p(x)∨ q(x)∨ r(x). For the extreme case of a singleton remainder back-
tracking can be completely avoided (Sec 4.4.2).

Obviously, this criterion is only applicable to split literals.

3. Term Weight

Weighting a term by the number of contained symbols and preferring
“lighter” literals is known to be a very useful heuristics. In Darwin
the weight of a term is simply the number of its symbols. Because
variables are excluded from counting, additional preference is given
to literals with variables instead of parameters or other terms at the
variables’ positions. For instance, f(a, a, a, x) has a term weight of 4
and f(g(x), a) is preferred to f(g(a), a).
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The resolution prover Otter [McC94] offers far more sophisticated con-
trol facilities to weigh a term, further experimentation in this direction
might pay off.

4. Generation

This is a measure of how close in the derivation the candidate is to the
original clause set. The generation of a context literal is −1 for the
pseudo-term ¬v, and the generation of the corresponding candidate
otherwise. The generation of a candidate is the maximum of the gen-
erations of the context literals used in its context unifier incremented
by one. For example, a candidate whose context unifier is solely based
on ¬v is of generation 0, and a candidate whose context literals are of
generations 1, 2, 2, 4 is of generation 5.

Candidates with a smaller generation are preferred. The intention is to
keep the derivation close to the problem set. For some problems this
is the key to their solution, on average it is a slight improvement.

Another criterion which quickly comes to mind is the term depth. But
recall that the term depth is not needed as part of the heuristics as it is
implicitly imposed by the depth bound (Sec. 4.2) and to some degree by
the term weight. Testing indicates that adding the term depth as a further
criterion does in general not improve the derivation behavior.

Another interesting criterion which has proven useful with the propo-
sitional DPLL procedure is to prefer literals from recent conflict sets, i.e.
literals recently responsible for the closure of a branch [GN02]. Since conflict
sets are already computed in Darwin as they are used for backtracking—these
essentially correspond to the explanations of the closing context unifiers—
this heuristics should be quite easy to incorporate. Quick ad-hoc tests did
not show any improvement, though. This might be because in contrast to
the propositional DPLL case inME Split decisions do depend on each other
and thus conflict sets are even more “local”.

As the used criteria conflict to some degree in their preference of candi-
date literals the induced lexicographic ordering might be too static, especially
when additional criteria are considered for addition. Another staple theorem
prover technique, keeping several priority queues and alternately picking can-
didates from different queues might help in overcoming this shortcoming. For
instance, in resolution theorem provers the so called pick-given ratio scheme
is popular [McC94, Wei, Ria03]. Here, two priority queues exist, and usually
the candidates are picked from the first queue, but after every k selections
a candidate is taken from the second queue. For example, the first queue
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might be sorted by term weight and the second queue by candidate age or
term depth.

Under this scenario adding the term weight and conflict set membership
as further criteria seems to be more promising. Unfortunately, this also
complicates the selection function and makes it more expensive, in terms of
performance and memory. Nevertheless, this idea should be exploited as the
selection heuristics influence on the derivation length is critical do Darwin’s
efficiency. If such a more flexible way of changing the heuristics were available
it might also be worth to use automatic learning to try to find out the value
of different heuristics for different problem classes [Sch00].

To simplify debugging and the comparison of different data structures a
total ordering is imposed on the candidates by extending the order induced
by the heuristics based on the candidates context unifier. This makes the
derivation more stable wrt. changes in data structures or algorithms. For
example, if a new data structure is used for storing the candidate set, or if
the candidates are computed in a different order the selection function still
choses the same candidate literal.

4.3.2 Default Interpretation

As mentioned in section 2.3, the pseudo-literal ¬v that constitutes the ini-
tial context assigns by default false to all ground atoms. Instead of ¬v the
pseudo-literal v, which assigns true to all ground atoms, might also be cho-
sen. It might indeed often seem plausible to take v as many theorem proving
benchmarks consist of an axiom part and a “theorem” part. The theorem
part quite often consists of one or more negative clauses. These theorem
clauses are falsified in the interpretation associated with the pseudo-literal v.
Now, the calculus considers for Split rule applications only clause instances
that are falsified in the current interpretation. All in all, this means that
then theorems are used early in the derivation, while, the use of, in partic-
ular, positive clauses from the axiom part is de-emphasized. The calculus
thus becomes more goal-oriented than with ¬v for the initial context.

However, the overall performance on many TPTP problems that have the
structure mentioned is much better with ¬v than with v (Sec. 5).

4.4 Performance

Here, the techniques are described which improve the performance indepen-
dently from guiding the derivation like the ones presented in Section 4.3 do.
Some are tailored for Darwin like Split-less Horn (4.4.1), Unit Split (4.4.2),
context unifiers (4.4.4), and partial context unifiers (4.4.5), others are com-
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mon techniques like unification (4.4.3), dependency directed backtrack-
ing (4.4.6), and term indexing (4.4.7).

4.4.1 Split-less Horn

For Horn problems it is not necessary to use the Split rule, in fact in the
current implementation it is never applied.

Proposition 4.1 (Split-less Horn) Fairness is preserved for Horn clause
sets if Assert is exhaustively applied to all clauses even if Split is dropped
from the set of inference rules.

Thus, for Horn problems—which are auto-detected—Darwin does nei-
ther add ¬v to the context, nor search for split candidates, thus saving on
the fruitless computation of context unifiers. The computed derivation tree
consists only of one branch as Split is never applied.

Example 4.2 Let Φ be the following Horn clause set.

← q(x) (1)
p(x) (2)

r(x)← p(x) (3)
q(x)← r(x), s(x) (4)

The context initially consists of {¬v}, the candidate set consists of the as-
sert candidates ¬q(x) and p(x) based on the unit clauses 1 and 2. Asserting
¬q(x) leads to no new candidates. Now the subsequent assertion of p(x) leads
with clause 3 to r(x) as a new assert as well as a split candidate. After r(x) is
asserted the split candidate r(x) is subsumed by the context and dropped. Fi-
nally, clause 4 produces together with ¬q(x) and r(x) the new assert and split
candidate ¬s(x). After ¬s(x) is asserted no more valid candidate exists and
the derivation terminates with the final context {¬s(x), r(x), p(x),¬q(x)}.

4.4.2 Unit Split

A split literal from a unit remainder, i.e. a remainder consisting of only
one literal, must be satisfied by the context in order to find a model. Thus,
applying the right side of Split to a unit remainder literal on backtracking is
pointless as it immediately closes the branch.

Proposition 4.3 If the sequent Λ′ ` Φ′ is obtained from Λ ` Φ by a right
Split on a literal from a unit remainder, then there exists a closing context
unifier between Λ′ and Φ′.
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Example 4.4 Let the context unifier of the clause p(x)∨q(x) and the context
literals ¬p(f(u)),¬q(v) be σ = {x 7→ f(u), v 7→ f(u)}. Then, the remainder
is q(f(u)).

Now, after backtracking the left split on q(f(u)) the right split is done
on ¬q(f(u)). The context unifier of the clause p(x) ∨ q(x) and the context
literals ¬p(f(u)),¬q(f(u)) is τ = {x 7→ f(u), v 7→ u}. The remainder of τ is
empty and Close can be applied to τ to close the current derivation branch.

As a consequence Darwin does not even generate a choice point for a
Unit Split, i.e. a Split on a unit remainder literal. It is basically treated as
an Assert.

4.4.3 Unification

During unification it is often required that the participating literals have no
variables in common. For Darwin this is in particular the case when context
unifiers are computed, i.e. when a clause is unified with fresh variants of
context literals. Renaming of variables by physically creating a new term is
expensive in terms of memory and performance. There are several methods
in use to avoid this.

For instance, SPASS does not explicitly rename common variables, but
instead uses a modified unification algorithm and computes different substi-
tutions for each participating clause resp. literal [Wei]. Otter and KRHyper
use so called contexts, not to be confused with contexts in the sense of ME
and Darwin. A compile time limit is imposed on the number of variables
per term, e.g. 64 variables per term in the case of KRHyper. A variable is
represented by a number lower than the limit. A context defines a multiplier,
a number unique to this context. For the purpose of unification each literal
resp. clause is associated with its own context. During unification a variable
is identified by its effective id which computes as the limit multiplied by the
associated context multiplier, plus the variable’s id.8

Darwin extends this idea avoiding the compile time limitation. Again, a
variable is represented by a number, and for unification each literal is associ-
ated with a second number, here called offset instead of context multiplier.
Now, the effective id of a variable is not computed as a number but is simply
the pair of the offset and the variable’s id.

Example 4.5 Let’s assume a context unifier between the clause p(x) ∨
p(f(x)) and fresh variants of the context literal ¬p(u) is to be computed.
The offset 0 is assigned to the clause, 1 to the first, and 2 to the second

8 For details see unify.c of Otter’s source resp. term.ml of KRHyper’s source.
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variant of ¬p(u). Now, 0:p(x) and 1:¬p(u) resp. 0:p(f(x)) and 2:¬p(u) are
unified, yielding the unifier {0:x 7→ 1:u, 2:u 7→ 0:f(x)}. Effectively, 1:u and
2:u are treated as two different variables by the unification algorithm.

As shown in the example a triangular representation is used for substitu-
tions in Darwin. The above unifier actually maps 2:u 7→ 0:f(1:u), i.e. bound
variables in bound terms have to be replaced when applying the substitution.

4.4.4 Context Unifier

As stated in Definition 2.9 a context unifier is simply a most general simul-
taneous unifier between a clause C from the problem clause set and literals
K0, . . . , Kn from the context, where clause literals only contain universal
variables and context literals are pair-wise variable disjoint. Thus, all con-
text unifiers between C and K0, . . . , Kn are identical up to variable renam-
ing. But, due to the existence of parametric variables these context unifiers
may differ with respect to the computed remainder. Recall that a literal
Kiσ generated by the context unifier σ is a remainder literal if a parameter
u ∈ Par(K) is bound to a non-parameter, i.e. σ(u) = t with t being a
universal variable or a term.

Example 4.6 Some context unifiers for the clause p(x) ∨ q(a, y) and the
context literals ¬p(u),¬q(v, w) are σ1 = {u 7→ x, v 7→ a, w 7→ y}, σ2 = {x 7→
u, v 7→ a, y 7→ w}, and σ3 = {x 7→ u, v 7→ a, w 7→ y}. Although σ1, σ2, and σ3

are equal up to variable renaming they lead to different remainders, σ1 results
in p(x) ∨ q(a, y), σ2 in q(a, w), and σ3 in q(a, y). These remainders differ
in size and in containing parametric or universal variables. The preferred
context unifier is σ3 according to the heuristics described in (sec 4.3.1), as
its remainder is shortest and contains no parameters.

Note that all remainders are subsumed by q(a, w) as well as q(a, y). Thus,
if the remainder of σ2 or σ3 is produced by the context this implies that the
remainders of σ1, σ2, and σ3 are all produced. This property can be exploited
to avoid the necessity to consider all possible context unifiers between a clause
and a context.

Proposition 4.7 (Perfect Context Unifier) Let Σ be the set of context
unifiers between the clause C = L0 ∨ · · · ∨ Ln and the context literals
K0, . . . , Kn. Then, there is a context unifier σ (called perfect context uni-
fier) such that the remainder of σ subsumes (not necessarily in a p-preserving
way) the remainder of each context unifier in Σ.
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This implies in particular that if a closing context unifier exists, i.e. a
context unifier with an empty remainder, a perfect context unifier is also
a closing context unifier. Furthermore, the restriction to perfect context
unifiers does not loose any applications of derivation rules based on context
unifiers:

(i) Split

As stated above if there exists a context unifier for a clause and a con-
text, then there also exists a perfect context unifier using the same
context literals. Recall that a remainder must be admissible for use
with Split, i.e. remainder literals must not share universal variables
and a remainder literal must not contain universal and parametric vari-
ables. Obviously, a perfect context unifier can easily be made admis-
sible by mapping all universal variables occurring in remainder literals
to parameters. This yields an admissible perfect context unifier whose
remainder contains only parametric literals. Thus, if there exists an ad-
missible context unifier there also exists an admissible perfect context
unifier.

(ii) Assert

Say, the clause C ∨ L is checked for the applicability of Assert. Let
σ be a perfect context unifier of C and the context with an empty
remainder, but let the assert literal Lσ be parametric. Then, as σ is
not computed as a unifier of L and a context literal —and it is assumed
that variables not necessary for the unification are bound to themselves
in the substitution—, L must share a variable x with a literal from C,
such that σ(x) = t with t being a term containing a parameter. If t
is not a parameter itself no change to x’s binding is possible. If t is a
parameter altering the context unifier by replacing x 7→ t with t 7→ x
or mapping the parameter t to a fresh universal variable can be used
(repeatedly) to make Lσ parameter free. But, as x is shared this would
also introduce a remainder literal to the altered context unifier. Thus,
if the perfect context unifier σ prevents the applicability of Assert there
is no other context unifier that is applicable to Assert.

(iii) Resolve

Say, the clause C ∨ L is checked for the applicability of Resolve and
L is unified with the context literal K. Recall that the preconditions
for Resolve include that Cσ = C. Therefore, assume for all context
unifiers that if a universal variable x from L and a universal variable
y from K are unified y is always bound to x. For example, L = p(x)
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and K = ¬p(y) results in {y 7→ x}. Furthermore, if two variables x, y
from L are to be unified, while x does also occur in C, but y does only
occur in L, then y is bound to x. For example, C = q(x), L = p(x, y),
and K = ¬p(z, z) results in {z 7→ x, y 7→ x}. This is an easy way to
ensure that no Resolve applications are lost due to avoidable variable
renamings of variables occurring in C.

Now, let σ be a perfect context unifier of L and the context with an
empty remainder, but let Cσ 6= C. Then, as σ is not computed as
a unifier of C and a context literal —and again it is assumed that
variables not needed in the unification are bound to themselves in the
substitution—, L must share a variable x with a literal from C, such
that σ(x) = t with t 6= x. From the requirements given above it follows
that t is neither a variable from K nor a variable local to L. Thus,
removing the effect of x to C by altering σ so that σ(x) = x is of no
value. Either x is bound to a non-variable fixing this binding, or x is
bound to another variable y of C and replacing x 7→ y by y 7→ x still
gives Cσ 6= C.

Thus, if there is no perfect context unifier σ for C ∨ L suitable for
Resolve there is also no other context unifier suitable for Resolve.

(iv) Close

Trivially follows from what is stated above as the only precondition for
Close is the existence of a closing context unifier.

Unfortunately, the above given way to compute admissible perfect context
unifiers is not desirable in practice. It produces solely parametric remainder
literals while as described in Section 4.3.1 universal remainder literals are
highly preferred to parametric ones. Thus, instead of the above described
simple scheme of binding all universal variables to parameters after the con-
text unifier has been computed the following more sophisticated one is em-
ployed in order to compute an admissible perfect context unifier. The clause
p(f(x0))∨q(f(x0), g(y0))∨r(h(z0))∨s(z0, a)∨t(z′0, b) and the context literals
¬p(u1),¬q(u2, v2),¬r(u3),¬s(u4, v4),¬t(u5, v5) (where as usual x0, y0, z0, z′0
are variables and u1, u2, u3, u4, u5, v2, v4, v5 are parameters) will be used as
a running example while introducing the algorithm:

1. Unification

During unification when a parameter and a variable are to be unified
the variable is always bound to the parameter. From the proof of
Proposition 4.7 it becomes immediately clear that this leads to a perfect
context unifier, as no parameter is bound to a variable.
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This context unifier is not necessarily admissible, though, as several
remainder literals may contain the same universal literal or a remainder
literal may contain both universal and parametric variables.

The perfect but non-admissible context unifier computed in the exam-
ple is {u1 7→ f(x0), u2 7→ f(x0), v2 7→ g(y0), u3 7→ h(u4), z0 7→ u4, v4 7→
a, z′0 7→ u5, v5 7→ b} with the remainder p(f(x0)) ∨ q(f(x0), g(y0)) ∨
r(h(u4)) ∨ s(u4, a) ∨ t(u5, b).

2. Unsharing

The first requirement for an admissible context unifier is fulfilled by
mapping universal variables occurring in several remainder literals to
fresh parameters. This introduces no new remainder literals as bind-
ings to parameters never generate remainder literals. Then, as this
operation is also only a variable renaming the resulting context unifier
is still a perfect context unifier.

The second requirement for an admissible context unifier, purely uni-
versal or parametric remainder literals, is not yet addressed, though.

For the example this gives by binding x0 to the fresh parameter u′0
the perfect but non-admissible context unifier {u1 7→ f(u′0), u2 7→
f(u′0), v2 7→ g(y0), u3 7→ h(u4), z0 7→ u4, v4 7→ a, z′0 7→ u5, v5 7→ b, x0 7→
u′0} with the remainder p(f(u′0)) ∨ q(f(u′0), g(y0)) ∨ r(h(u4)) ∨ s(u4, a)
∨ t(u5, b).

3. Reversion

As mentioned it is desirable to have universal and not parametric re-
mainder literals. For this end the context unifier might be altered by
reversing some variable to parameter bindings. By reversing a bind-
ing x 7→ u in a unifier σ we mean (σ|Dom(σ)\x){u 7→ x}. That is, the
binding of x 7→ u is reversed and variables previously bound to u are
now bound to x. Obviously, this operation is prone to introducing new
remainder literals and can not be applied arbitrarily.

A binding x 7→ v may be reversed if for all parameters u with σ(u) = v
(including v) holds:

(i) u occurs in a remainder generating context literal

That is, u ∈ Par(K)i, where Ki is a context literal generating a
remainder literal.

This ensures that no bindings of fresh parameters are reversed and
that the effect of Step 2 is not undone. Furthermore, no bindings
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of parameters from non-remainder generating context literals can
be effected. Thus, no non-remainder generating context literals
can be transformed into remainder generating context literals.

(ii) u occurs in exactly one remainder literal

That is, for the remainder M0 ∨ · · · ∨Mn there is an i such that
there is a u ∈Miσ such that for all j 6= i is holds that u /∈Mjσ.

This prevents that reversing a parameter contained in several re-
mainder literals introduces a universal variable common to all
these remainder literals, thus effectively undoing Step 2 and mak-
ing the context unifier not admissible.

As (i) and (ii) do not introduce new remainder literals and reversing is
a variable renaming the resulting remainder is still a perfect remainder.

For the example only reversing z′0 7→ u5 is possible. Binding x0 to the
fresh parameter u′0 results in the perfect but non-admissible context
unifier

{u1 7→ f(u′0), u2 7→ f(u′0), v2 7→ g(y0), u3 7→ h(u4), z0 7→ u4, v4 7→
a, u5 7→ z′0, v5 7→ b, x0 7→ u′0} with the remainder p(f(u′0)) ∨
q(f(u′0), g(y0)) ∨ r(h(u4)) ∨ s(u4, a) ∨ t(z′0, b).

The binding of x0 to the fresh parameter u′0 was specifically added to
remove the shared universal variable x0 from two remainder literals,
its reversion would conflict with (i). The reversion of z0 7→ u4 would
violate (ii), and would introduce the now shared universal variable z0

to several remainder literals.

4. Unmixing

Finally, the variables of all remainder literals which now still contain
universal as well as parametric variables are bound to fresh parame-
ters.9

The only mixed remainder literal in the example is q(f(u′0), g(y0)).
Binding y0 to the fresh parameter v′0 gives the final admissible perfect
context unifier {u1 7→ f(u′0), u2 7→ f(u′0), v2 7→ g(v′0), u3 7→ h(u4), z0 7→
u4, v4 7→ a, u5 7→ z′0, v5 7→ b, x0 7→ u′0, y0 7→ v′0} with the remainder
p(f(u′0)) ∨ q(f(u′0), g(v′0)) ∨ r(h(u4)) ∨ s(u4, a) ∨ t(z′0, b).

Thus, instead of extensively computing context unifiers needed as precon-
ditions for the derivation rules it is sufficient to compute one perfect context

9 For the more recent version of the calculus which allows mixed literals this step is
omitted.
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unifier. The remainders of all other existing context unifiers are subsumed
by the remainder of a perfect context unifier. This implies in particular that
the number of its remainder literals is minimal among all remainders.

Furthermore, the above algorithm gives a way to compute a perfect con-
text unifier and to transform it into an admissible perfect context unifier. It
is well suited for Split as it tries to generate parameter-free remainder literals
whenever possible.

4.4.5 Partial Context Unifier

As described in Step 3 of Darwin’s proof procedure all possible context uni-
fiers involving the context literal just added are exhaustively computed. To
be precise, the system computes context unifiers of input clauses in order
to identify literals that can be added to the context by the Split rule, and
computes context unifiers of subsets of input clauses in order to identify lit-
erals that can be added by the Assert rule. To speed up this computation,
context unifiers are partially precomputed and cached as described below.
For simplicity, only the computation of the context unifiers for Split is con-
sidered here. Figure 4.4.5 illustrates this process and its embedding in the
proof procedure.

θ1

L

L1

Ln

S1

Sn

Remainder

⊆ Cσ

···
···

···

θn

C

K′· · · · · ·K

K Kθ = Lθ

④ σ = θθ1 · · · θn

⑤⑥

③ θ
②

K′

θ

①

Candidates

Partial context unifiers

Figure 1: Computation of context unifiers and its embedding in the proof
procedure.

Each input literal has an associated list of partial context unifiers. A
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partial context unifier is merely a unifier between the input literal and a
literal from the current context.10

When a new literal K is added to the context (Step 2 of the proof pro-
cedure, Step ① in Figure 4.4.5), the system sequentially computes all par-
tial context unifiers between (a fresh variant of) K and each input literal
(Step ②). This corresponds to semi-naive evaluation as e.g. used in deduc-
tive databases. Assume that C is of the form L ∨ L1 ∨ · · · ∨ Ln, θ is the
freshly computed partial context unifier between L and K, and Si is the set
of partial context unifiers stored in Li’s list. After θ is stored in the list of
partial context unifiers of L (Step ③) all context unifiers for C involving K
are computed by trying to merge each tuple of partial context unifiers in
{θ} × S1 × · · · × Sn into a single unifier (Step ④). When the merge suc-
ceeds, the resulting substitution is a context unifier of C against the current
context.

To minimize recomputation, the merged unifiers are computed incremen-
tally by traversing the partial context unifier lists for the clause C in a depth-
first fashion. The root node of the depth-first traversal is θ, its children are
all the partial context unifiers of L1, the children of each of the root’s chil-
dren are all the partial context unifiers of L2, and so on. Partial context
unifiers are merged incrementally as they are visited along a path of this
imaginary tree, and the merged unifier computed along a path is reused for
all the extensions of that path.

Clearly, less work is done if the tree is slim at the top, as less merg-
ing operations are then necessary. To achieve this the lists associated with
the literals L1, . . . , Ln in C are kept ordered by increasing length. This is
indicated in Figure 4.4.5 by boxes of growing length for S1 to Sn.

Each newly computed context unifier determines a remainder (Step ⑤),
and every such (non-empty) remainder provides one new candidate literal
(K ′ in Step ⑥) that gets added to the candidate set in Step 6 of the proof
procedure. As described in Section 4.4.4 resp. Section 3.1 it is sufficient to
compute only one context unifier, to make it admissible after its computation,
and to pick only one of its remainder literals.

Note that for each candidate literal the system maintains a reference
to the remainder and the context unifier it came from. This information
is needed to determine the validity of a context unifier in backtracking, to
check the productivity of a context unifier, and for the selection heuristics.
This entails that all the computed context unifiers are permanently kept in

10 The bindings of the stored partial context unifiers are kept in a database similar to
the term database (cf. Sec. 4.5.1). Especially for some Horn problems, where many very
similar terms are computed, the unifiers tend to share most bindings.
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memory, either explicitly or implicitly by knowledge of the used literals.
This behavior is not enforced by the calculus. It would also be perfectly

valid to compute context unifiers one after the other until an admissible one
is found, to apply Split on it, and to discard it immediately. Obviously, this
would greatly reduce memory consumption. But the advantages of the chosen
implementation are that, first, the computation of each context unifier is
attempted exactly once and not more, and secondly, the selection heuristics
knows all valid remainders and split candidates. This seems to pay of in
practice, though it is the primary bottleneck of the system. Furthermore,
the memory consumption is no problem in most cases.

4.4.6 Backtracking

The simplest backtracking strategy for a search procedure is (näıve) chrono-
logical backtracking, which backtracks to the most recent choice point in the
current branch of the search tree and retracts it. If the choice point was
created by a left Split then the corresponding right Split is applied, otherwise
backtracking is continued with the previous choice point. Recall from Defi-
nition 3.1 that a choice point is created by a Split, and that the subsequent
applications of Assert, Subsume, Resolve, and Compact do not create a new
choice point but merely add to the current choice point.

P

Q

R

¬S

Figure 2:
derivation branch

¬R

Q

P

Figure 3:
naive backtrack-
ing

Example 4.8 Figure 2 shows a derivation branch where a choice point is
represented by its creating split literal. The branch consists of left splits on P ,
Q, R, and a right split on ¬S. For the sake of simplicity Assert applications
are ignored.

Now, assume that a closing context unifier has been found. The most
recent choice point is ¬S, which is retracted. As this already was a right split
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backtracking continues to the previous choice point, R. R is retracted and
replaced by the corresponding right split ¬R as shown in Figure 3.

More effective backtracking techniques implemented in Darwin take de-
pendencies between choice points into account (Def. 3.2).

The idea of backjumping is to skip choice points on backtracking which
are not involved in closing a derivation, i.e. choice points which do neither
directly nor indirectly through dependencies contribute literals to the closing
context unifier. These are exactly the choice points which do not occur in the
explanation of any closing context unifier used to close a branch. Replacing
these left split choice points by their corresponding right splits does not
remove any of the choice points responsible for closing the branch, i.e. the
same closing context unifier will be found again making the exploration of this
branch futile. Pruning these fruitless branches is the purpose of backjumping.

Backjumping is well known to be one of the most effective improvements
for propositional SAT solvers. It can be seen as an example of a successful
propositional technique that directly lifts to the proof procedure of Darwin.

¬S

R

Q

P

Figure 4: branch
with dependen-
cies

P

¬Q

Figure 5:
backjumping

Example 4.9 Let’s reuse the previous example extended by dependencies
(Fig. 4). R and Q are dependent on P , ¬S is dependent on Q and thus also
on P . Additionally, this time assume that the found closing context unifier
does only use context literals from P and ¬S.

Then, R can be skipped as neither a context literal of R nor a choice point
dependent on R is used in the closing context unifier. Thus ¬R is not created
and instead ¬Q is added (Fig. 4).

A smarter non-chronological technique has been proposed under the name
of dynamic backtracking by Ginsberg [GCE96]. It can be adapted to the cho-
sen proof procedure and exists in Darwin as an alternative to backjumping.
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Here, a choice point not involved in establishing the closing of a branch is not
discarded as in backjumping, but kept. The choice points involved are the
same as for backjumping, i.e. the explanations of closing context unifiers.
Note that every right split must also be retracted, as it was only applied
because its left split was backtracked and thus part of the explanation.

Conceptually, the choice points are no longer seen as nodes in a tree but
as nodes of a dependency graph (Fig. 7). Discarding a choice point does not
automatically invalidate all later created choice points as well, but only those
dependent on it. Thus, dropping and possibly recomputing a still valid and
potentially useful part of the derivation is avoided.

¬S

R

Q

P

Figure 6: branch
with dependen-
cies

R

¬S

P

Q

Figure 7:
dependency
graph

¬QR

P

Figure 8: dy-
namic
backtracking

Example 4.10 Let’s again reuse the previous example. This time the
derivation tree is represented as a dependency graph (Fig. 7). As in back-
jumping R is skipped and ¬Q created by a right Split. But this time R is not
dropped but kept (Fig. 8).

A disadvantage of dynamic backtracking versus backjumping is that its
implementation is more involved and requires a more complex type of depen-
dency analysis. Furthermore, some optimizations based on the assumption
that the context changes only linearly are not possible anymore. That is, if
a literal is removed from the context it is not necessarily the most recently
added one but might be some arbitrary literal. This causes non-negligible
runtime overhead, leading in practice sometimes to shorter derivations but
despite of this to worse performance than backjumping.

4.4.7 Term Indexing

In theorem proving large sets of terms have to be managed. Unification
queries like unifiability or subsumption of a term against a term set are done



4 IMPLEMENTATION 42

very often and have to be fast. A standard technique to handle this problem
is indexing of term sets in order to avoid a naive linear scan through the
term set. Of several existing successful techniques Darwin implements two,
discrimination trees11 and substitution trees. They had to be slightly adapted
in order to handle two kinds of variables, i.e. parameters and variables.

Discrimination trees ([SRV01]) index on common term prefixes. A term is
seen as a sequence of symbols given by its pre-order traversal. A tree is built
over sequences of the kind where each branch corresponds to a stored term
and terms with identical prefixes share the initial parts of their branches.
In standard discrimination trees all variables are represented by the same
special constant, in perfect discrimination trees each variable is represented
by a different constant. Thus in standard discrimination trees the terms
p(x, x) and p(x, y) have the same representation and falsely found matches
have to be filtered out after the query.

A sample perfect discrimination tree for the terms f(x, x), f(x, y), f(b, a),
and f(c, a) is given below. Currently only standard discrimination trees
are implemented in Darwin, they are planned to be enhanced to perfect
discrimination trees in the near future.
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f(x, x)
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f(x, y)
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a

f(b, a)

c

a

f(c, a)

Substitution trees ([Gra94]) index terms by abstracting over common
subterms. Two terms are indexed by constructing a generalized term, which
represents differences among the two more special terms with variables. The
specializations are then stated by different substitutions binding the variables
to the corresponding subterms. So called indicator variables are used to mark
a variable as final, i.e. subterms may not bind and instantiate these variables.

As not only prefixes but all subterms can be shared substitution trees
improve on discrimination trees with respect to this aspect. In the exam-
ple sharing over the suffix of the terms f(b, a) and f(c, a) is now possible.
Indicators are written as ∗i, where i is an index.

11 The discrimination tree module was implemented by John Wheeler based on
Christoph Wernhard’s implementation for KRHyper.
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σ1 = x0 7→ f(x1, x2)
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σ2 = x1 7→ ∗1
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σ4 = x2 7→ ∗1
f(x, x)

σ5 = x2 7→ ∗2
f(x, y)

σ3 = x2 7→ a

����

HHHH

σ6 = x1 7→ b
f(b, a)

σ7 = x1 7→ c
f(c, a)

But, the implementation of substitution trees is much more complicated,
and the queries, esp. the maintenance operations, are more complex and ex-
pensive than with discrimination trees. In the current implementation sub-
stitution trees are actually slightly slower than discrimination trees in most
cases. A reason might be a suboptimal implementation, or the relatively
small term set which rarely contains more than 10000 terms. In general sub-
stitution trees seem to be best suited for deep terms containing variables. For
shallow ground terms, e.g. for some Bernays-Schönfinkel problems, Darwin’s
implementation of substitution trees might actually perform slower than no
indexing at all.

Currently term indexing is used for two purposes.
Firstly, as the context is a literal set and most inference rules have to check

whether a literal is subsumed by or contradictory with a context literal storing
the context in a term index is an obvious application. Based on empiric
results the context is stored in a discrimination tree for Horn-problems, as
it is faster than a substitution tree, and in a substitution tree for non Horn-
problems, as the discrimination tree implementation does not yet support
checking the productivity of a remainder literal.

Secondly, all valid assert and unit split (Sec. 4.4.2) candidates (Def. 3.3)
are stored in a discrimination tree.12 Each newly computed assert or unit
split candidate is checked for unification with the index. If a contradictory
candidate exists in the index it is chosen for the next application of Assert.
Obviously, this leads to the immediate computation of a closing context uni-
fier based on the two contradictory candidates. This corresponds to a weak
kind of unit propagation lookahead that only considers immediate closings
of the derivation branch.

This check prevents that although contradictory assert candidates have
been computed and are known none of them is chosen for application for
a considerable amount of time, i.e. in practice forever. Testing shows that

12 Actually, only active candidates are put in the index, see Section 4.5.2.
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the overhead of these checks is in general neglectable with respect to the
quite often shortened derivation, some derivations are only completed in a
reasonable amount of time due to this check.

4.5 Memory

Darwin uses two main techniques to reduce memory usage. First, every term
and subterm exists only once physically in the system, secondly, candidates
unlikely to be used are stored in a compact format.

4.5.1 Term Database

During the derivation tens of thousands of terms might exist at the same
point, easily consuming hundreds of megabytes of memory. The same term
and subterm might be in use several times, e.g. bound in different context
unifiers or candidate literals. To reduce the high memory consumption Dar-
win uses a database technique similar to the ones used e.g. in E [Sch99, Sch00]
and Vampire [RV01]. It is ensured that each term and subterm does exist
only once in the system, i.e. all term occurrences reference the same physical
instance, leading to perfect term and subterm sharing.

Terms are represented as tree-like data-structures. Building a term is
done by creating a tree where the root node consists of a function or predicate
symbol and its children nodes consist of sub-terms. Terms are managed by
the term database. Term creation is done solely inside the database, all
other parts of the system request terms from the database but never create
them. If a requested term is already contained in the database it is simply
returned, otherwise it is transparently created and then returned. Thus, all
parts of the system use exactly the same term instance. Furthermore, terms
are normalized in the database, that is p(x, y) and p(y, x) are the same term
for the system.

Internally, the terms are stored in a set of weak references. Weak refer-
ences are ignored by the garbage collector. Thus, as long as a term is used
and referenced anywhere in the system from outside the database it is kept
alive. But, when the only remaining references to the term are from inside
the database the term is automatically free for garbage collection, as it is
considered to be unreferenced and thus disposable.

The consultation of the database for each term creation and the man-
agement of the weak set introduces noticeable overhead. But, on the other
hand checking terms for equality, a widely used check during unification, is
reduced to checking for pointer equality, which is significantly faster. Thus,
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on average the term database even gains some performance in addition to
saving significantly on memory consumption.

4.5.2 Passive Candidates

For first-order resolution theorem provers the given-clause algorithm is widely
used to divide the set of current clauses into an active and a passive part [Wei,
Sch00, GHLS03, Ria03]. Only the active clauses participate in inference
and simplification steps. This serves the purpose of reducing the number of
inferences applied but also of reducing memory consumption, as a passive
clause can e.g. in Waldmeister be represented in constant size with a few
integers.

Inspired by this, only a limited amount of candidate literals—currently
8192—is kept as active, the remaining candidates are considered to be passive.
The set of active candidates always consists of the best candidates. If the
active set is full and a candidate has to be added, the worst active candidate
is made passive. If it is not full anymore it is filled up with the best passive
candidates.

Active candidates are stored with full information, passive candidates
in a more compact way. For example, the candidate literal of an passive
candidate is not stored, and the candidate literal and its context unifier have
to be recomputed from the reference to the corresponding clause and context
literals. As these literals already exist in the term database this amounts to
storing a few pointers per candidate, plus the information necessary for the
selection heuristic.

For problems generating only small sets of candidates passive candidates
never occur. Otherwise, the overhead of managing passive candidates, and
recomputing dropped information when activating passive candidates is ne-
glectable with respect to the whole derivation time. This scheme saves no-
tably on memory, but for some problems the vast amount of computed can-
didates still consumes several hundreds of megabytes quite quickly.
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5 Evaluation

“I have steadily endeavored to keep my mind free so as to give
up any hypothesis, however much beloved (and I cannot resist
forming one on every subject), as soon as the facts are shown to
be opposed to it.”

— Charles Darwin

Darwin’s performance is evaluated against the TPTP problem library in
version 2.613, a library of first-order problems compiled with the purpose
of testing and comparing theorem provers [PSS02]. Firstly, Darwin is run
against all relevant problems of the TPTP library, and secondly, it partici-
pated in a theorem prover competition based on the TPTP.

Updates of experimental results and more detailed information, including
Darwin’s time and memory consumption individually for each problem, can
be found on Darwin’s web page.14

5.1 TPTP 2.6

All TPTP problems have a problem rating based on their difficulty wrt.
current theorem provers. Thus, the whole TPTP is used to test Darwin for
correctness and to get an estimation of its performance based on the solved
problems. As Darwin’s input language is clause logic, and Darwin does
not have dedicated inference rules for equality, the focus is on the clausal
problems without equality in the TPTP.

All tests were run on a Pentium IV 2.4Ghz computer with 512MB of
RAM. The imposed time limit was 300 seconds, the memory limit of 500 MB
was only very rarely exceeded. Darwin was compiled with OCaml 3.07.

The next table summarizes the results for all 753 Horn problems without
equality (HNE). Darwin was run with different configurations to test the
effect of different settings. In the Default configuration all derivation rules,
indexing, and Split-less Horn are activated. All other configurations differ
by exactly one option, i.e. no Subsume by deactivating the Subsume rule,
no Resolve by deactivating the Resolve rule, no Compact by deactivating
the Compact rule, no Indexing does not use term indexing (Sec. 4.4.7), and
Split-less does not use the Split-less Horn optimization (Section 4.4.1). For
each configuration the result is stated in the form “Number of problems
solved”/“average CPU time spent”. The given timings are not particularly

13 See http://www.cs.miami.edu/~tptp/.
14 See http://www.mpi-sb.mpg.de/~baumgart/DARWIN/.

http://www.cs.miami.edu/~tptp/
http://www.mpi-sb.mpg.de/~baumgart/DARWIN/
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exact, as they are subject to other processes running on the test machines
leading to varying caching and swapping behavior. Thus, they should be
taken more or less as hints.

Default no Subsume no Resolve no Compact no Indexing Split-less
599/4.7 599/5.5 599/5.4 599/5.4 592/6.9 594/4.5

The results show that the single settings change the performance only
very slightly. Especially the effect of the calculus rules is disappointing. This
might be because, first, ME as an instantiating calculus mostly works with
instances of the problem literals, thus Subsume only rarely applies aside from
unit clauses for the first-order case—but is perhaps more useful for proposi-
tional logic—, and secondly, the effect of Compact is lessened by the selection
heuristics, which constructs the context by preferring the most general liter-
als. The standard technique term indexing shows the most noticeable impact,
the Horn optimization does also pay off.

Note that even performance improvements of say 20% do not result in a
large number of additionally solved problems. This is because if a problem
is solved it is usually solved very quickly, that is in a few seconds, or it takes
very long. Even improving by 20% would only additionally solve problems
which previously needed 300 to 360 seconds to solve, which are abviously not
too many.

Now, the results for all 1172 non-Horn problems without equality (NNE)
are shown. Again, different configurations were used, where in the Default
configuration all derivation rules, filtering of non-productive context unifiers
(Def. 2.9), term indexing (Sec. 4.4.7), and backjumping (Sec. 4.4.6) are em-
ployed. Furthermore, remainder literals with mixed parameter and variable
occurrences are allowed in admissible context unifiers (Sec. 4.4.4) and ¬v is
used as the pseudo-literal present in the context (Sec. 4.3.2). Like in the
Horn case all other configurations differ by exactly one option. Aside from
the configurations equal to the ones for the Horn case Naive Backtr. corre-
sponds to strict chronological backtracking, Dynamic Backtr. uses dynamic
backtracking instead of backjumping, Unmixed requires that remainder lit-
erals are either parametric or universal, and v uses v instead of ¬v as the
pseudo-literal.

Note that for Horn problems the backtracking method, productivity fil-
ter, default interpretation, and mixed literals do not matter, as, first, no
backtracking happens at all, and secondly, no splitting occurs and thus all
context literals are universal (Sec. 4.4.1).
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Default no Subsume no Resolve no Compact no Productivity
875/4.2 875/4.3 857/7.8 875/4.2 819/5.0

Naive Backtr. Dynamic Backtr. Unmixed v no Indexing
844/4.0 866/4.4 875/4.3 816/6.6 859/4.3

Again, term indexing shows a noticeable improvement while Compact and
Subsume have no effect, but at least using Resolve pays off this time. Dy-
namic backtracking reveals to be inferior to backjumping due to the intro-
duced overhead, but it is a significant improvement over naive chronological
backtracking. Mixed literal do not seem to be an improvement, but they en-
able shorter derivations with improved performance, and they lead to more
solved problems if the time limit is increased from 300 seconds. The two most
important options with a significant impact on the performance turn out to
be the productivity check, especially when applied to remainders based on
a context unifier using the pseudo-literal, and using ¬v but not v as the
pseudo-literal.

The default configuration was used for a run over the whole TPTP in-
cluding problems with equality with an increased timeout of 500 seconds.
Results are given in the form “Number of problems”/”Number of problems
solved”/“average CPU time spent”.

Horn, no equal. Horn, equal. non-Horn, no equal. non-Horn, equal.
753/604/8.9 1403/412/29.4 1172/881/6.9 2145/390/15.9

The results show that Darwin is indeed weak for equality, and that in-
creasing the timeout is of little value as only a few more problems are solved.
Significant improvements of the calculus are not to be gained by linear speed-
ups but must be achieved by using smarter algorithms. For the classes with-
out equality Darwin solves most problems with low ratings, and a few prob-
lems with high ratings like 0.88. This indicates that the performance is
neither really strong nor really weak compared to other theorem provers. In
the detailed results available on the web page the solved problems are also
given sorted by rating to exemplify this result.

5.2 CASC-J2

In order to compare Darwin with other current provers, Darwin participated
in the CASC competition, an annual competition of theorem provers based
on the TPTP, which took place at IJCAR in July 2004. Full detail of the
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competition results are available from http://www.cs.miami.edu/~tptp/

CASC/J2/WWWFiles/Results.html.
Unfortunately, the version of Darwin that participated at the competition

turned out to be unsound afterwards. Therefore, and because the current
version of Darwin is more performant than the one used at the competition,
not the results achieved in the competition but the performance of the current
version is given in Table 1

Name # Problems Darwin Vampire E DCTP Otter
CASC-J2 7.0 0.82 10.21p 3.3

HNE 35 15 35 31 27 13
HEQ 35 0 31 31 8 3
EPS 40 40 9 – 40 –
EPT 40 39 37 – 39 –
NNE 35 17 34 32 22 3
SNE 50 17 – – 25 –

Table 1: CASC-J2 competition. Problem division names: HNE – Horn with
No Equality; HEQ – Horn with some (but not pure) Equality; EPS – Effectively
Propositional Non-theorems (satisfiable clause sets); EPT – Effectively Proposi-
tional Theorems (unsatisfiable clause sets); NNE – Non-Horn with No Equality;
SAT with No Equality. ’–’ denotes that a prover did not participate in this division.

As expected Darwin is very weak for SNE problems and Horn problems
with equality. It is also weak for HNE and NNE problems, though still
better than Otter which is seen as a good result for a fresh implementation.
But Darwin fares extremely well for the EPR division, i.e. EPS and EPT,
which consist of satisfiable and unsatisfiable clause sets with a finite Herbrand
universe, i.e. essentially the Bernays-Schönfinkel class. This good result was
hoped for, as the Model Evolution Calculus is a decision procedure for this
class. The only other competitive prover is DCTP, the implementation of
the disconnection calculus [LS01], another instance based decision procedure
for the EPR class.

For the overall good performance for a new prover Darwin received the
”Outstanding Newcomer” award.

http://www.cs.miami.edu/~tptp/CASC/J2/WWWFiles/Results.html
http://www.cs.miami.edu/~tptp/CASC/J2/WWWFiles/Results.html
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6 Conclusion and Future Work

“Without speculation there is no good and original observation.”

— Charles Darwin

The purpose of this thesis was to evaluate the implementation potential
of the Model Evolution Calculus. Darwin implements a first-order version
of unit propagation and backjumping, two techniques which are considered
absolutely critical for the good performance of propositional DPLL-based
SAT solvers. Their lifting to first-order was basically straightforward, as the
Model Evolution calculus itself was already designed with them in mind.
Furthermore, custom first-order prover techniques like iterative deepening,
term indexing and term sharing have been implemented.

Some of the further work on the calculus is testing and tuning various al-
ternatives and settings. The selection heuristics makes use of some common
criteria like the term weight, but e.g. preferring literals from the conflict set
is an important heuristic for DPLL implementations which has not yet been
implemented and should be fairly easy to add, as conflict sets are already
computed for backtracking. Furthermore, making the selection process less
static by cyclically changing the order of the criteria is another staple tech-
nique to integrate. Currently, fairness is ensured by iterative deeping over the
term depth, experimenting with other common criteria like the term weight
and the derivation tree depth might also be worthwhile. The incorporation of
another staple technique for DPLL-based solvers, lemma learning, is planned
but will require some more theoretical work on the calculus level first. Like-
wise, handling equality is mandatory for first-order provers and should be
added after the calculus is extended accordingly.

To broaden Darwin’s possible field of application it might be interesting
to be able to start with a given semantic tree instead of starting the derivation
from scratch. This enables incremental proving and usage of special domain
knowledge. Furthermore, especially for the Bernays-Schönfinkel class Darwin
could enumerate found models instead of just returning the first one found.
Also, the input format might no longer be restricted to clause form but allow
full first-order form. Then, preprocessing the input, which can significantly
improve the performance if done right, seems even more advisable.

Taking its immaturity into account Darwin fares quite well compared
to current provers, especially on the Bernays-Schönfinkel class. This was
expected as problems for this class are effectively propositional, and ME is
designed as a lifting of DPLL to first order. There, the only prover on the
same level with Darwin is the established prover DCTP, which is based on
the disconnection tableau calculus.
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When assessing the performance of Darwin compared to other provers
one should take into account that the Model Evolution calculus is a very re-
cent development. A great deal of knowhow has been developed over the last
decades for the implementation in particular of resolution and model elimi-
nation based systems. I find the first experimental results very encouraging.
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A Manual

“...it is always advisable to perceive clearly our ignorance.”

— Charles Darwin

As custom for provers Darwin is a simple command line application which
takes a problem specification as its input. In the following the installation,
the configuration, and the input and output format are explained.

A.1 Installation

Darwin is implemented in OCaml and thus available for Unix systems and
Windows. It has been tested with OCaml versions 3.07 and 3.08, and on Red
Hat 7.2, SuSE 8.1/8.2/9.0, Gentoo 1.4, Debian 3.0 unstable, FreeBSD 4.10,
and WindowsXP.

The installation is described in detail in the file INSTALL in the source
distribution available at http://www.mpi-sb.mpg.de/~baumgart/DARWIN/.
Basically, as long as the OCaml native code compilers are installed the in-
stallation process reduces to an invocation of gnu make which creates the
executable darwin. Binaries for Linux and Windows are also available from
the web page.

A.2 Configuration

Darwin does not support a configuration file, all parameters have to be passed
as command line options. The option -help displays all options along with
a concise explanation of their effects and default settings.

For each optional inference rule of the calculus, i.e. Subsume, Resolve,
and Compact (Sec. 2.2), an option to deactivate their usage exists. Fur-
thermore, the default interpretation (Sec. 4.3.2), the backtracking method
(Sec. 4.4.6), the initial term depth bound (Sec. 4.2), and the usage of mixed
literals (Sec. 4.4.4) can be specified. The verboseness of the derivation can
be adjusted from silent to displaying each derivation step along with the
underlying context unifier.

A.3 Invocation

Darwin expects at least the file name containing the problem specification.
Additionally, any combination of the optional arguments described in Sec-
tion A.2 may be added. For example,

http://www.mpi-sb.mpg.de/~baumgart/DARWIN/
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darwin -help

shows the help including a description of all options,

darwin problem.tme

tries to solve the problem problem.tme using the defaults,

darwin -v 0 problem.tme

prints only the derivation result, and

darwin -v 3 -pdf derivation.dot problem.tme

shows the derivation and prints it as a graph to the file derivation.dot.

A.4 Input

Darwin uses the tme syntax as its input format, the format used by
the provers developed at the university of Koblenz-Landau. Its full syn-
tax is specified in http://www.uni-koblenz.de/ag-ki/Systems/Protein/

tme-syntax.txt and described in detail in [Sch96]. As Darwin does not
support configuration settings or queries in the problem description the valid
syntax is restricted to the rules necessary to specify formulae:

clause ::= [ head ] ’:-’ body ’.’

| head [ ’<-’ [ body ]] ’.’

head ::= literal { ( ’,’ | ’;’ ) literal }

body ::= literal { ’,’ literal }

literal ::= [ ’-’ ’~’ ]? atom

| ’true’

| ’false’

atom ::= symbol [ ’(’ term ( ’,’ term)* ’)’]?

| ’(’ term ’=’ term ’)’

term ::= variable

| symbol [ ’(’ term ( ’,’ term )* ’)’ ]?

variable ::= [ ’A’-’Z’ ’_’ ] [ ’a’-’z’ ’A’-’Z’ ’0’-’9’ ’_’ ]*

symbol ::= [ ’a’-’z’ ’0’-’9’] [ ’a’-’z’ ’A’-’Z’ ’0’-’9’ ’_’ ]*

http://www.uni-koblenz.de/ag-ki/Systems/Protein/tme-syntax.txt
http://www.uni-koblenz.de/ag-ki/Systems/Protein/tme-syntax.txt


A MANUAL 54

’\%’ is used to comment out lines, ’/*’ ... ’*/’ to comment out
regions.

The only valid infix predicate symbol is =, which is meant to represent the
usual equality relation. However, as the calculus does not support equality
it is just treated as an uninterpreted symbol for the time being.

Note that the arity of a symbol is permanently defined by its first usage.
For instance, p(a) fixes p to be a predicate symbol of arity one. If p is later
on used with a different arity, e.g. p(a, b), this is considered to be invalid
input and Darwin terminates with an error message.

Examples for input files can be found at test/demo satisfiable.tme,
test/demo unsatisfiable.tme and test/PUZ001-1.tme in the source dis-
tribution of Darwin. PUZ001-1.tme has been created from the TPTPv2.6
problem PUZ001-1.p by applying the conversion script tptp2X contained
in the TPTP package with the parameter -f protein.15

A.5 Output

If the derivation terminates successfully a satisfiable problems is denoted
by printing SATISFIABLE, an unsatisfiable problem by UNSATISFI-
ABLE. If the derivation is aborted—due to a limitation of Darwin— NO
SOLUTION is printed.16

During the derivation each of the main derivation steps can be shown,
i.e. each application of Assert, Split, and Close (Sec. 2.2).17 A derivation is
enclosed by START OF DERIVATION and END OF DERIVATION.
Parameters are denoted by =i, universal variables by _i, skolem constants
by __i__, where i is a number. The numbers in brackets show the id of
the corresponding choice point (Sec. 3), which is basically an incrementing
counter. A possible derivation for the problem demo satisfiable.tme

r(a); r(f(a)).

s(X); t(X).

p(f(X)); q(f(X)) :- r(a).

p(f(X)) :- q(f(X)).

q(f(X)) :- p(f(X)).

false :- q(f(X)), p(f(X)).

using ¬v, backjumping, and an initial term depth bound of 2 is

15 See section 5 for further details on the TPTP.
16 This never happened in the used test cases.
17 See Section 4.4.2 on Unit Split.
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START OF DERIVATION

[0] Depth bound: 2

[1] Split Left: +r(a)

[2] Split Left: +s(=0)

[3] Split Left: +p(f(=0))

[3] Unit Split: +q(f(=0))

[3] Close:

[3] Backtrack To [2]

[3] Split Right: -p(f(=0))

[3] Unit Split: +q(f(=0))

[3] Close:

[3] Backtrack To [0]

[1] Split Right: -r(a)

[1] Assert: +r(f(a))

[2] Split Left: +s(=0)

END OF DERIVATION

Using dynamic backtracking instead leads to the slightly shorter derivation

START OF DERIVATION

[0] Depth bound: 2

[1] Split Left: +r(a)

[2] Split Left: +s(=0)

[3] Split Left: +p(f(=0))

[3] Unit Split: +q(f(=0))

[3] Close:

[3] Invalidating [3]

[3] Split Right: -p(f(=0))

[3] Unit Split: +q(f(=0))

[3] Close:

[3] Invalidating [1]

[3] Renaming [2] to [1]

[3] Invalidating [3]

[2] Split Right: -r(a)

[2] Assert: +r(f(a))

END OF DERIVATION

where one left split on +s(=0) is saved.
If wished the context unifier behind a derivation step can be given. ¬v

is denoted by -__v__, an assert gap in a context unifier by +__assert__,
a non-remainder literal by ___. This extends the previous example (with
backjumping) to
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START OF DERIVATION

[0] Depth bound: 2

[1] Split Left: +r(a)

Clause : [+r(a), +r(f(a))]

Context: [-__v__, -__v__]

Remain.: [+r(a), +r(f(a))]

[2] Split Left: +s(=0)

Clause : [+s(_0), +t(_0)]

Context: [-__v__, -__v__]

Remain.: [+s(=0), +t(=0)]

[3] Split Left: +p(f(=0))

Clause : [+p(f(_0)), +q(f(_0)), -r(a)]

Context: [-__v__, -__v__, +r(a)]

Remain.: [+p(f(=0)), +q(f(=0)), ___]

[3] Unit Split: +q(f(=0))

Clause : [+q(f(_0)), -p(f(_0))]

Context: [-__v__, +p(f(=0))]

Remain.: [+q(f(=0)), ___]

[3] Close:

Clause : [-q(f(_0)), -p(f(_0))]

Context: [+q(f(=0)), +p(f(=0))]

[3] Backtrack To [2]

[3] Split Right: -p(f(=0))

[3] Unit Split: +q(f(=0))

Clause : [+p(f(_0)), +q(f(_0)), -r(a)]

Context: [-p(f(=0)), -__v__, +r(a)]

Remain.: [___, +q(f(=0)), ___]

[3] Close:

Clause : [+p(f(_0)), -q(f(_0))]

Context: [-p(f(=0)), +q(f(=0))]

[3] Backtrack To [0]

[1] Split Right: -r(a)

[1] Assert: +r(f(a))

Clause : [+r(a), +r(f(a))]

Context: [-r(a), +__assert__]

[2] Split Left: +s(=0)

Clause : [+s(_0), +t(_0)]

Context: [-__v__, -__v__]

Remain.: [+s(=0), +t(=0)]

END OF DERIVATION
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Additionally, if backjumping is used the derivation tree of a terminated
derivation (Sec 2.3) can be written to a file as a graph in the dot format.18

When visualized with the graphviz dot tool blue nodes represent an applica-
tion of Assert, yellow ones of a Unit Split, green ones of Split, and red ones
of Close. The empty root node is merely there for aesthetical reasons.

By default a compact representation is produced, where a left and right
split are represented as the two children of their parent node. When the
option to add the underlying context unifiers is activated these context uni-
fiers are also embedded in the graph enlarging it. Be aware that those trees
quickly become huge and are only feasible for very small derivations, i.e. with
perhaps up to 100 derivation steps.

Assert

Split

Unit Split

Close

+r(a) -r(a)

+s(=0)

+p(f(=0)) -p(f(=0))

+q(f(=0)) +q(f(=0))

+r(f(a))

+s(=0)

Figure 9: Derivation tree of example (with legend).

The derivation tree for the example is shown in Figure 9. The first two
branches are marked as closed by red leaves, while the third branch is marked
as exhausted by a black leaf, thus yielding a model.

If requested a found model is shown by printing the context literals one
per line. The context found in the above example is:

START OF CONTEXT (’MODEL’):

-__v__

+s(=0)

+r(f(a))

-r(a)

END OF CONTEXT

18 See http://www.graphviz.org/cgi-bin/man?dot

http://www.graphviz.org/cgi-bin/man?dot
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This induces the model in which all instances of s(x) and r(f(a)) are true, and
all other atoms are false. For a more detailed explanation see Definition 2.7.

Furthermore, some statistics can be shown, i.e. the number of applica-
tions of each inference rule, the maximal context size, et cetera.
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B Proofs

“A mathematician is a blind man in a dark room looking for a
black cat which isn’t there.”

— Charles Darwin

B.1 Completeness

These proofs establish the completeness of the implementation.

B.1.1 Fairness

This lemma basically states that a remainder shrinks if one of its literals
becomes contradictory with the context. For convenience we will interpret a
remainder as a set of literals in the following.

Lemma B.1 Let σ be an admissible context unifier of the clause L0 ∨ · · · ∨
Ln ∨ L and the context literals K0, . . . , Kn, K with the remainder R, where
L and K generate the remainder literal Lσ = Kσ. Let M be a context literal
contradictory with Lσ with the unifier τ . Then, there exists a context unifier
ρ of L0∨· · ·∨Ln∨L and the context literals K0, . . . , Kn, M with the admissible
remainder R′ such that R′ = R \ {Lσ}.

Proof. The context unifier ρ can be constructed from σ by the following
steps:

1. removal of K:

Let U = Var(L1) ∪ . . . ∪ Var(Ln) ∪ Var(L) ∪ Var(K0) ∪ . . .Var(Kn) ∪
Par(L1) ∪ . . . ∪ Par(Ln) ∪ Par(L) ∪ Par(K0) ∪ . . .Par(Kn), i.e.
the set of variables and parameters contained in the clause and context
literals except for K. Let θ = σ|U , i.e. the original context unifier
except for bindings of variables from K.

Now, wrt. to the shortened clause L1∨· · ·∨Ln and the context literals
¬K1, . . . ,¬Kn are σ as well as θ admissible context unifiers yielding
the same remainder R \ {Lσ}.

2. extension to M .

Here, the context unifier is extended to the whole clause using the
context literal M , yielding the new context unifier ρ = θτ .
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The unifier τ is p-preserving and thus Dom(τ) does contain only uni-
versal variables. As τ is a unifier between M and Lσ, τ can be divided
into τ1 = τ|Var(M) and τ2 = τ|Var(Lσ).

Because all context literals are variable disjoint, Dom(τ1) does not con-
tain any variables from Dom(θ) or variables contained in terms from
Ran(θ). Thus, θτ1 simply amounts to adding all mappings from τ1 to
θ. As Dom(τ) contains no parameters this can not introduce any new
remainder literals, if θτ1 is interpreted is a context unifier.

In an admissible remainder no two remainder literals can contain the
same universal variables. Therefore, Var(Lσ) must be disjoint with
all literals in R \ {Lσ}. Thus, if θτ2 instantiates terms from Dom(θ)
this has no effect on R \ {Lσ}— the application of θτ2 or θ produces
identical remainder literal instances.

Therefore, θτ2 amounts to instantiating Lσ to Lρ, and possibly instan-
tiating further non-remainder literals, but keeps the other remainder
literals unchanged.

Thus, ρ is an admissible context unifier of L1 ∨ · · · ∨ Ln ∨ L and
K1, . . . , Kn, M yielding the remainder (R \ {Lσ}).

Actually, the new remainder may be computed containing truly p-
preserving more general variants of the literals from the original remainder.
This happens, if before making σ admissible a remainder literal Liσ shares
universal variables with Lσ but no other remainder literal. When made ad-
missible those universal variables were mapped to parameters. But in ρ,
when Lσ is no longer part of the remainder, this is no longer necessary and
those universal remainder literals may remain in Li.

ut

With this we can show that it is not necessary to pay attention to all
literals of a remainder in a fair derivation.

Proposition 3.5 A fair procedure is still fair if instead of each remainder
literal merely at least one literal of each remainder is considered for Split
applicability

Proof. For the current sequent Λi ` Φi let C = L0 ∨ · · · ∨ Ln ∨ L be a
clause from Φ, D = K1, . . . , Kn, K be fresh variants of literals from Λ, and
σ be a productive context unifier of C and D with the admissible remainder
R. Now let Lσ, the remainder literal generated by L and K, be the selected
remainder literal, i.e. the only remainder literal which is considered for Split.
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Based on Proposition 3.4 it has to be shown that a fair limit tree is con-
structed, i.e. either a refutation tree or an exhausted branch. Obviously, this
concerns only item i) of Definition 2.16 (Exhausted Branch), the productiv-
ity of remainder literals. That is, it must be shown that one of the literals
of the remainder R is eventually going to be produced by the context in an
exhausted branch.

If Split is applicable to Lσ it will be considered sometime in the future
for application. If not, the following two preconditions for the applicability
of Split to Lσ must be violated:

1. (Lσ)
sko

is not contradictory with the context

If this precondition is not true then there must be a context literal
M which has a p-preserving unifier with Lσsko. As  Lσsko contains
no universal variables this implies that M ≥ Lσsko. As the skolem
constants of Lσsko are fresh constants they can not be contained in
M . Thus, from M ≥ Lσsko follows M ≥ Lσ. Therefore, the context
permanently produces the remainder literal Lσ.

2. Lσ is not contradictory with the context

If this precondition is not fulfilled then there must be a context literal
M which is contradictory with Lσ. From Lemma B.1 it follows that
then there is another context unifier with the admissible remainder
R \ {Lσ}. Ensuring that one of this remainder’s literals is produced
by the context implies ensuring that one of the original remainder’s
literals is produced by the context. As remainders are of finite size
this recursive process obviously terminates with an empty remainder
or producing a remainder literal common to all remainders of this chain.

Thus, if the selected split literal Lσ is not applicable in an open branch
it is either produced by the context, or there is another remainder consisting
of remainder literals of R\{Lσ} ensuring that R will be eventually produced
in an exhausted branch. ut

B.1.2 Split-less Horn

Here it is shown that for Horn problems Split needs no to be applied.

Lemma B.3 If Φ is a Horn clause set in a sequent Λ ` Φ, then in each
sequent Λ′ ` Φ′ obtained by applying an inference rule (or a sequence of
inference rules) of the ME calculus to Λ ` Φ the resulting clause set Φ′ is
also a Horn clause set.
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Proof. The only inference rules that modify the clause set are Subsume and
Resolve. Subsume removes a complete clause from Φ, so the remaining clauses
in Φ still constitute a Horn clause set. Resolve removes one literal from a
clause in Φ. Regardless if this literal is a positive or a negative literal, the
clause remains Horn as it still contains at most one positive literal. As the
other clauses are untouched the new clause set is also a Horn set. ut

Thus, a Horn problem remains a Horn problem throughout the derivation,
and a non-Horn problem might turn into a Horn problem at some point.

Lemma B.4 In a derivation for a Horn problem all computed remainders
are universal unit remainders (if ¬v is the initial context literal).

Proof. Initially, the only context literal is ¬v, the pseudo-literal unifying with
all positive literals and always producing a remainder literal. As all clauses
are Horn each one contains at most one positive literal. Thus, every non-
empty context unifier must be between ¬v and a unit clause with a positive
universal literal K yielding a unit remainder consisting solely of K.

Thus, initially the only literals which can be added to the context—by
means of Split on unit remainders or Assert—are universal. Let’s assume that
at least one of those universal literals has been added to the context which
now consists of {¬v, K0, . . . , Kn}, where K0, . . . , Kn must be universal. As
Ki is universal Ki can not create remainder literals in any context unifier,
¬v is still solely responsible for any remainder literals. As the clause set
stays Horn according to Lemma B.3 ¬v can still be used at most once in
a context unifier. Thus, although now there might be non-empty context
unifiers of the context and non-unit clauses they still generate only universal
unit remainders.

Therefore, by induction, the context remains universal throughout the
derivation (except for ¬v) and all remainders are universal unit remainders.

ut

This can be exploited in conjunction with Assert.

Lemma B.5 A literal stemming from a universal unit remainder that is
applicable to Split is also applicable to Assert.

Proof. Let’s assume that the universal unit remainder literal Lσ = ¬Kσ was
computed from the clause C ∨L and the context literals K0, . . . , Kn, K with
the context unifier σ, and that it is applicable to Split. The preconditions for
applying Assert to Lσ are:
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(i) there is a context unifier of C against Λ with an empty remainder.

Let U = Var(L1) ∪ . . . ∪ Var(Ln) ∪ Var(L) ∪ Var(K0) ∪ . . .Var(Kn) ∪
Par(L1) ∪ . . . ∪ Par(Ln) ∪ Par(K0) ∪ . . .Par(Kn), and σ′ = σ|U , that
is σ reduced to C. As σ is a context unifier for C∨L and K0, . . . , Kn, K,
σ and σ′ are context unifiers for C and K0, . . . , Kn as well. From
producing a unit remainder it follows that K is the only context literal
that binds at least one parameter u to a non-parameter t in σ. No
parameter from a context literal in K0, . . . , Kn can be bound to u, as
then it were also bound to t and the context literal were also part of
the remainder. Thus, as no context literal from K0, . . . , Kn binds a
parameter to a non-parameter in σ resp. σ′ it follows that σ′ has an
empty remainder.

(ii) Lσ is parameter-free.

This follows from the precondition that Lσ is universal.

(iii) Lσ is non-contradictory with Λ.

This is true as it is also a precondition for Split on Lσ.

(iv) there is no M ∈ Λ s.t. M ≥ Lσ.

This is true as it is also a precondition for Split on Lσ.

Thus, Assert is applicable on Lσ with the context unifier σ′ of C and
K0, . . . , Kn. ut

Thus, splitting on universal unit remainders is not mandatory and they
can be dropped upon computation, as the current implementation always
prefers Assert. For Horn problems this also entails that Split is never applied.

Proposition 4.1 (Split-less Horn) Fairness is preserved for Horn clause
sets if Assert is exhaustively applied to all clauses even if Split is dropped from
the set of inference rules.

Proof. Lemma B.4 states that each remainder computed during the deriva-
tion of a Horn problem is a universal unit remainder. With Lemma B.5 it
follows that additionally to splitting on such a remainder literal asserting it
is also possible. But, asserting it invalidates the remainder as the remainder
literal is now permanently produced and the Split is never applied. That is,
if Assert is exhaustively applied before Split is considered, then Split is never
applied. Thus, Split can be dropped from the inference rules. ut

Note that if v is used as the pseudo-literal this proof chain can also be
used to show that a problem clause set containing only clauses with at most
one negative literal is solved without applying Split as well
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B.2 Soundness

These proofs concern the soundness of Darwin.

B.2.1 Unit Split

Splitting on a unit remainder literal can be interpreted as a kind of Assert as
no backtracking is needed.

Proposition 4.3 If the sequent Λ′ ` Φ′ is obtained from Λ ` Φ by a right
Split on a literal from a unit remainder, then there exists a closing context
unifier between Λ′ and Φ′.

Proof. Let σ be a context unifier between the clause C ∨ L and the context
literals K1, . . . , Kn, K with Lσ = Kσ being the only remainder literal. Now,

after left splitting on Lσ and backtracking Lσ
sko

is added by the correspond-

ing right Split. Obviously, Lσ and Lσ
sko

are contradictory by construction
and with Lemma B.1 it immediately follows that there is a context unifier τ

of L1∨ · · ·∨Ln∨L and K1∨ · · ·∨Kn∨Lσ
sko

with a remainder that contains
one literal less than the remainder of σ. As the original remainder contained
only Lσ, the new remainder is empty and τ is a closing context unifier. ut

B.2.2 Context Unifier

A perfect context unifier limits the search for context unifiers with suitable
remainders, as a perfect context unifier has in a sense a perfect remainder
which makes the computation of other remainders redundant.

Proposition 4.7 (Perfect Context Unifier) Let Σ be the set of con-
text unifiers between the clause C = L0 ∨ · · · ∨ Ln and the context literals
K0, . . . , Kn. Then, there is a context unifier σ (called perfect context uni-
fier) such that the remainder of σ subsumes (not necessarily in a p-preserving
way) the remainder of each context unifier in Σ.

Proof. Remainder literals are generated in a context unifier τ by binding
a parameter to either (i) a term or (ii) a universal variable. As a context
unifier is a most general unifier all context unifiers are identical up to variable
renaming.

Thus, for (i) a binding of a parameter to a term is an invariant for all
context unifiers, and the corresponding context literal generates a remainder
literal in all context unifiers.
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For (ii) the effect of a binding u 7→ x from τ can be undone by binding x to
a fresh parameter u′ and applying the substitution θ = {x 7→ u′} to τ ′. Thus,
all variables bound to x in τ are bound to u′ in τ ′. In particular is the old
binding of u replaced by u 7→ u′ and u is no longer responsible for generating
a remainder literal. This process can not introduce new remainder literals, as
bindings to parameters never generate remainder literals. But, a remainder
literal solely generated because the parameters of the corresponding context
literal were all bound to universal variables is no longer a remainder literal.

Thus, binding each universal variable in τ with τ(x) = x to a fresh
parameter removes (ii) as a source for remainder literals. The result is a
context unifier σ that generates remainder literals only through bindings of
parameters to non-parameter terms. According to (i) the remainders of all
context unifiers contain those remainder literals (modulo variable renaming)
and possibly further literals. Therefore, as the remainder of σ is modulo
variable renaming a subset of the remainders of all context unifiers, the re-
mainder of σ (interpreted as a clause) subsumes the remainder of every other
context unifier. ut
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exhausted, 11
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candidate
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literal, 13
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selection, 27
set, 13
valid, 13
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choice point, 12
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graph, 57
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given-clause, 45

Horn, 4
Split-less, 30
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interpretation
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iterative deepening, 25

learning, 26
lemma, 26

model, 5
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evolution, 3
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ordering, 27
total, 29

parameter-preserving, 4
parametric, 4
pick-given ratio, 28
platform, 52
priority queue, 28
productive, 6

context unifier, 7
pseudo-literal, 29
pseudocode
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non-chronological, 18

remainder, 7
size, 27

restart, 25
rules, 8

Assert, 8
Close, 9
Compact, 9
Resolve, 9
Split, 8

left,right, 12
Subsume, 9

SATISFIABLE, 54
semi-naive, 38
skolemization, 5
substitution tree, 42

term
database, 44
depth, 12
indexing, 42
sharing, 44
weight, 27

tme, 53
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unification, 31

triangular, 32
unit propagation lookahead, 44
unit split, 30
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