Lemma Learning in the
Model Evolution Calculus

Peter Baumgartner Cesare Tinelli
National ICT Australia (NICTA) Department of Computer Science
Pet er. Baungart ner @i ct a. com au The University of lowa

tinelli@s. ui owa. edu

Alexander Fuchs
Department of Computer Science
The University of lowa
fuchs@s. ui owa. edu

March 14, 2006
(Last modified May 19, 2006)

Abstract

The Model Evolution {€) Calculus is a proper lifting to first-order logic of
the DPLL procedure, a backtracking search procedure fqrgsitional satisfiabil-
ity. Like DPLL, the ME calculus is based on the idea of incratadly building a
model of the input formula by alternating constraint progitémn steps with non-
deterministic decision steps. One of the major conceptuatévements over basic
DPLL is lemma learninga mechanism for generating new formulae that prevent
later in the search combinations of decision steps guagdntelead to failure. We
introduce three lemma generation methods\t# proof procedures, with various
degrees of power, effectiveness in reducing search, angwiational overhead.
Even if formally correct, each of these methods presentgtioations that do not
exist at the propositional level but need to be addressed@doning to be effective
in practice forM&. We discuss some of these issues and present initial exgerim
tal results on the performance of an implementation withanidn of the three
learning procedures.

1 Introduction

The Model Evolution Y E) Calculus [BT03a] is a proper lifting to first-order logic of

the DPLL procedure, a backtracking search procedure fgogsitional satisfiability.

Similarly to DPLL, the calculus is based on the idea of inceatally building a model
1

of the input formula by alternating constraint propagatsteps with non-deterministic
decision steps. Two of the major conceptual improvemeres basic DPLL developed
over the years arbackjumping a form of intelligent backtracking of wrong decision
steps, andemma learninga mechanism for generating new formulae that prevent later
in the search combinations of decision steps guaranteedbto failure.

Adapting backjumping techniques from the DPLL worldXtE implementations is
relatively straightforward and does lead to performangarawements, as our past expe-
rience withDarwin, our M&-based theorem prover, has shown [BETI06b]. In contrast,
adding learning capabilities is not immediate, first beeamse needs to lift properly to
the first-order level both the notion of lemma and the lemmzegation process itself,
and second because any first-order lemma generation pragéss significant compu-
tation overhead that can offset the potential advantagk=saaifing.

In this paper, we introduce and prove correct three lemmarg#ion procedures
for ME& with various degrees of power, effectiveness in reducirsgcte and computa-
tional overhead. Even if formally correct, each of thesecpdures presents issues and
complications that do not arise at the propositional level aeed to be addressed for
learning to be effective foME. We discuss some of these issues and then present ini-
tial experimental results on the performance of an impldatem within Darwin of the
learning procedures.

The ME calculus is a sequent-style calculus consisting of thresechderivation
rules: Split, Assert and Close, and three more optional rules. To simplify the exposi-
tion we will consider here a restriction of the calculus te tton-optional rules only. All
the learning methods presented in this paper can be extavittechinor modifications
to ME derivations that use the optional rules as well. The deamatules are presented
in [BT032] and in more detail il IBT03b]. We do not presentithdirectly here because
in this paper we focus oproof proceduredor M&, which are better described in terms
of abstract transition systems (see Sedfion 2). It sufficesy thaiSplit, with two pos-
sible conclusions instead of one, is the only non-detestimrule of the calculus and
that the calculus is proof-confluent, i.e., the rules maygmiad in any order, subject to
fairness conditions, without endangering completenessivations inM¢& are defined
as sequences dkrivation treestrees whose nodes are pairs of the fagkmr ® where
N is a literal set an@ a clause set. A derivation for a clause @$gtstarts with a single-
node derivation tree containingy and grows the tree by applying one of the rules to
one of the leaves, adding to that leaf the rule’s conclusaanshildren.

A proof procedure fofV(E in effect grows the initial derivation tree in a depth-first
manner, backtracking oclosed branches.e., failed branches whose leaf results from
an application ofclosell The procedure determines that the initial clause®gis
unsatisfiable after it has determined that all possibledivas are closed. Conversely, it

1 More precisely, the proof procedure performs a sort of fiezadeepening search, to avoid getting
stuck in infinite branches.

1.1 Related Work 3

finds a model ofdy if it reaches a node that does not contain the empty clauséoand
which no derivation rule applies.

In terms of constraint solving and search, 8ydit rule is the only rule that creates
choice points in the search space. Bwsert and theClose rules are just constraint
propagation operations that limit the amount of exploreatc® space. Like in all back-
tracking procedures, performance of a proof procedur@fércan be improved in prin-
ciple by analyzing the sequence of non-deterministic @®ig.e,Split decisions) that
have led to @onflict i.e., a closed branch. The analysis determines which aftibies
were really relevant to the conflict and saves this inforamtso that the same choices,
or similar choices that can also lead to a conflict, are avoided latdrarséarch. In the
next section, we present three methods for implementirgysitnit oflearning process.
The first two methods follow the footprints of popular leagnimethods from the DPLL
literature: conflict analysis is performed by means of a gdicesolution derivation that
synthesizes a new clausdeama containing the reasons for the conflict; then learning
is achieved simply by adding the lemma to the clause set aing itslike any other
clause in constraint propagation steps during the restetignivation. These methods
can be given a logical justification by seeing them just adheraderivation rule that
adds to the clause set selected logical consequences oétthénscontrast, the third
method we describe, although similar in spirit to the firsb,tlvas only an operational
justification.

1.1 Related Work

The paperlIGP00] is about satisfiability checking of functfeee first-order formulas.
Instead of the widely used reduction to propositional §atiflity and using a SAT solver
then, the authors propose to keep some of the original fasn{dlauses) and extend a
SAT solver to reason with them natively, on the first-ordeelginstead of grounding
them right away. Their main result is that this idea may wel pff when problem
instances become larger.

There is potential to connect their approach to ours by ebsgthat these first-order
formulas obviously need not come from the input formula—ytbeuld be lemma clauses
learnt by the techniques we propose. From the perspectitheoModel Evolution
calculus, the mentioned result allows to speculate that émeground derivations, the
learning of non-ground lemma clauses, which is supportedupytechniques, may pay
off when properly implemented.

Regarding directly related work, to our knowledge theratikelwork in the liter-
ature on conflict-driven lemma learning in first-order theorproving. The only ap-
proaches we are aware of have been formulated for the madahation calculus.
One of them is described ih_[AS92] and consists of the “caghand “lemmaizing”
techniques. Caching means to store solutions to subgo#lgh{vare single literals)
in the proof search. The idea is to look up a solution (a suhistn) that solves the

1.1 Related Work 4

current sugoal, based on the solution of a previously coetpablution of a compat-
ible subgoal. This idea of replacing search by lookup is ttwsceptually related to
lemma learning as we consider it here. However, cachingespands to learning of
unit clauses, and it works only for Horn clause EtsCloser to our approach is the
lemmaizing technique, which allows to generate and use teuges as the derivation
proceeds. Lemma clauses are generated on branch closuby aking the so-called
A-literals of a branch into consideration. The basic mdinrafor doing so is, like in
our approach, to represent a sub-proof by a single claussurprisingly, the lemmas
are consequences of the input clauses, potentially thera kt of them, and their use
may and should be subject to (arbitrary) heuristics. As §awa can tell from[[AS92]
(and other publications), the use of lemmas there seemad&e@en restricted tonit
lemmas, perhaps for pragmatic reasons, although the misohaas been defined more
generally (already irL.[Lov78]). The other related approadatescribed in[LSO1]. Their
approach generalizes the caching technique_of |[AS92]. Bhing the solutions in a
more context-dependent (“local”) way, it works for non-Harlauses, too. In particular
the variant offailure caching which can be used to conclude that a subgoal does not
have a solution, turned out to be very useful in practice.

Another source for related work comes from ExplanationeBlasearning (EBL), a
set of deductive learning techniques used in Artificial lligence. Generally speaking,
EBL allows the learning of logical descriptions of a condepin the description of a sin-
gle concept instance and a preexisting knowledge base. Ammansive and powerful
EBL framework is presented in [SEH94]. In theorem provingngrits basis consists es-
sentially of the language of definite logic programs and #iewus of SLD-resolution.
EBL is essentially the process of deriving from a given SLDgbra (definite) clause
representing parts of the proof or even generalizationgdfieThe rationale is to derive
clauses that are of higlitility, that is, help to find shorter proofs of similar theorems
without broadening the search space too much. Deriving slacises can be explained
using resolution terminology[{ISER4] use their own lange)adt basically amounts to
partially replaying parts of the given SLD proof and further modifing tibtained clause
in a sound way. For instance, one of the heuristics presctibexhaustively apply reso-
lution steps with binary clauses (implications with one ypéteral). Another heuristics
amounts to factoring, while still another one is based onoréng redundant subgoals.
Apart from the specific heuristics, the learning procedwegresent here follow a sim-
ilar process. Structurally, they are SLD-derivations m@dg lemma clauses, and have
a role comparable to the derivations [of [SE94].

2The underlying reason is that for non-Horn input clauseisajeneral the so-called reduction inference
rule is needed, which may introduce dependencies betwegralksuthat would have to be taken care of in
the lemma generation process.

2 An Abstract Proof Procedure M &

Being acalculus M¢E abstracts away many control aspects of a proof search. As-a co
sequence, one cannot formalize in it stateful operatiangkdvements such as learn-
ing, which is based on generating new clauses and adding tinéh@ current clause
set for use in later branches of the search tree. Followingpgmoach first introduced
in [NOTOH] for the DPLL procedure, one can however formaeaeral classes of proof
procedures foME in a way that makes it easy to model and analyze operatioatlres
like backtracking and learning.

An ME proof procedure can be described abstractly as a transifgiem ovestates
of the form L, a distinguished fail state, or the forfa - ® where® is a clause set
andA is an(ordered) contextthat is, a sequence ahnotated literalsliterals with an
annotation that marks each of them adexisionor a propagatedliteral. We model
genericME proof procedures by means of a set of states of the kind alogedher
with a binary relation—- over these states, thensition relation defined by means
of conditionaltransition rules For a given stat&, a transition rule precisely defines
whether there is a transition fro@by this rule and, if so, to which stat. A proof
procedure is then @ansition systema set of transition rules defined over some given
set of states. In the following, we first introduce a basiagiton system fofME and
then extend it with learning capabilities.

2.1 Formal Preliminaries

If = is a transition relation between states we write, as usbials S instead of
(S, 8) € =. We denote by—* the reflexive-transitive closure ef=. Given a tran-
sition systemR, we denote by—r the transition relation defined Hy. We call any
sequence of transitions of the fol—r S, SS =R S, ... aderivation in R and
denote ithySy =—=r S =r S = ... When convenient, we will see an ordered con-
text simply as a set of literals—ignoring both the annotatiand multiple occurences
of its elements. The concatenation of two ordered contextdes denoted by simple
juxtaposition. When we want to stress that a context liter&d annotated as a deci-
sion literal we will write it asLd. With an ordered context of the forfgL1 Az - - - LnAn
whereL,,...L, are all the decision literals of the context, we say that itieedls in/\g
are atdecision leveD, and those i A; are at decision leve| foralli=1,...,n.

The formal framework described so far would be sufficienhedfied to define
proof procedures for propositional logic. However, for fhiet-order proof procedures
we need additional technical preliminaries. They involaking with non-ground con-
texts and non-ground input clause sets.

The ME calculus uses two disjoint, infinite sets of variables: aéeif universal
variables, which we will refer to just as variables, and heotsetV, which we will
always refer to aparameters We will useu andv to denote elements & andx and

2.1 Formal Preliminaries 6

y to denote elements of. If t is a term we denote by/ar(t) the set oft’s variables
and byPar(t) the set oft's parameters. A terrhis groundiff Var(t) = Par(t) = 0.

A substitutionp is arenaming on WC (V U X) iff its restriction toW is a bijection of
W onto itself. A substitutioro is p-preserving(short for parameter preserving) if it is
a renaming orV. If sandt are two terms, we say thatis a p-variant of t and write
s~t, iff there is a p-preserving renamimgsuch thasp =t. We writes>t and say that
t is a p-instance of #f there is a p-preserving substitutiansuch thaso = t. We write
tsko to denote the term obtained franby replacing each variable trby a fresh Skolem
constant. All of the above is extended from terms to literalthe obvious way.

Every (ordered) context the proof procedure works with wilirt with apseudo-
literal of the form—wv, the role of which will become clear later. In examples widlally
not write —v explicitly. WhereL is a literal and\ a context, we will writeL €. A if L is
a p-variant of a literal im\. A literal L is contradictory witha context\ iff Lo = Ko for
someK €. A\ and some p-preserving substitutionA contextA is contradictory if one
of its literals is contradictory witl\. Each non-contradictory context starting with the
pseudo-literak-v defines a Herbrand interpretatidﬁ\ﬂ In a state of the form\ + @,
the interpretatiori”* is meant to be aandidatemodel for®. The purpose of the proof
procedure is to recognize whether the candidate model &trafmodel ofp or whether
it possibly falsifies a clause @f. The latter situation is detectable syntactically through
the computation ofontext unifiers

Definition 2.1 (Context Unifier) Let A\ be a context and

a parameter-free clause, where<n < n. A substitutiono is a context unifier of C
against/A with remainder k. 10V - - -V Lo iff there are fresh p-variantsy, ... K, €~ A
such that

1. ois a most general simultaneous unifief{éf;,L,},...,{Kn,Ln},
2. foralli=1,....m, (Par(K;))o CV,

3. foralli=m+1,...,n, (Par(K;))o Z V.

A context unifiera of C againstA with remaindeiL. 10V ---V L0 is admissible (for
Split) iff for all distinct i, j =m+1,...,n, Var(Ljo) N Var(L;0) = 0. O

Note that each context unifier has a unique remaindea idfa context unifier with
remainderD of a clauseC against a contexf\, we call each literal oD a remainder
literal of 0. We say tha€ is conflicting (in/A because of) if o has an empty remainder.

3 The difference between (universal) variables and paramet/(€ lies mainly in the definition of this
Herbrand interpretation. Roughly, a literal with a paraendtke A(u), in a context assigns true to all of its
ground instances that are not also an instance of a mordisgieral, like —A(f(u)), with opposite sign.
In contrast, a literal with a variable, lik&(x), assigns true to all of its ground instances, with no exoegti
See|BT03H. BT03b] for details.

2.2 A Basic Proof Procedure fofE 7

2.2 A Basic Proof Procedure forMé&

A basic proof procedure fdv(€ is the transition system B defined by the ruleside,
Propagate, Backjump andFail below. The relevant derivations in this system are those
that start with a state of the forfr-v} + ®, where® is the clause set whose unsatisfia-
bility one is interested in.

Decide: A ®,CVL = A(Lo)d - ®,CVL if (%)

o is an admissible context unifier 6fv L against\ (cf. Def.[Z1)
with at least two remainder literals

Lo is a remainder literal, and

neitherLa nor (Lo)™ s contradictory with

where(x) =

We call the literalLo above adecision literalof the context unifielc and the clause
CV L. This rule corresponds to an application of the left-hartk 9f the Split rule

in ME& (with the additional restriction that the context unifier shinave at least two
remainder literals).Decide makes the non-deterministic decision of adding the literal
Lo to the context. It is the only rule that adds a literal as asieuiliteral.

Propagate: AF ®,CVL = ALoF ®,CVL if(x)

o is an admissible context unifier 6fv L against\
with a single remainder literdlo,

Lo is not contradictory with\, and

thereisndK e As.t.K> Lo

where(x) =

We call the literaLg in the rule above thpropagated literabf the context unifieo and

the clause€ v L. This rule corresponds to applying the left-hand sidsit in ME with

a context unifier with a unit remainder, and ignoring the tigand sidd Propagate
also models the effect of applying thasert rule of ME whenL is a positive literal.
For simplicity, we ignore here the case in whichs negative. That case somewhat
complicates théropagate’s definition and is needed neither for the proof procedure’s
completeness nor for describing the results of this work.

C is conflicting in
ALIA but not inA

—sko

Backjump: ALIN F® C = AL+ ®,C if{
This rule corresponds to the application of thlese rule in ME, followed by a right-
hand sideSplit application higher up in the closed branciBackjump models both
chronological and non-chronological backtracking byiha, but not requiring, that
the undone decision liter&l be the most recent one. Note tha complement is added

4 Ignoring the right-hand side in this case is justifiedVi€ derivations because it produces a sequent
to which theClose rule is immediately applicable.

2.3 Adding Learning to\(€ Proof Procedures 8

as a propagated literal, after all (and only) the variables bave been Skolemized,
which is needed for soundness. More general versioBadfump are conceivable, for
instance along the lines of the backjump rule of Abstract DFNIOTO05S]. Again, we
present this one here mostly for simplicity.

C is conflicting inA,

Fail: AF®C = 1L if . .
A contains no decision literals

This rule corresponds to the application of ttiese rule in M€ to the last unexplored
branch of the derivation tree, with all other branches baingady closed.

Restart: AF ® = {-v} - ®

Restart is used to generate fair derivations that explore the sespabe in an iterative-
deepening fashion.

Although it is beyond the scope of this paper, one can shotilleee are (determin-
istic) rule application strategies for this transition teys that are refutationally sound
and complete, that is, that reduce a state of the forw} - ® to the statel if and only
if @ is unsatisfiable. Furthermore, for all (finite) derivati@mling with an irreducible
state of form/\ - @, A determines a Herbrand model ®f

2.3 Adding Learning to ME Proof Procedures

To illustrate the potential usefulness of learning techagjfor a transition system like
the system B defined in the previous subsection, it is useflddk first at an example
of a derivation in B.

Example 2.2 Let ® be a clause set containing, among others, the clauses:
(1) -B(X) VC(xy) (2) =A(X)V=C(y,x) VD(y) (3) =C(x,y)VE(X) (4) -D(x)V-E(x).

Table[l provides a trace of a possible derivatiodofThe first column shows the literal
added to the context by the current derivation step, thergecolumn specifies the
rule used in that step, and the third indicates which ingaria clause inb was used
by the ruled A row with ellipses stands for zero or more intermediate stdyote that
Backjump replacesthe whole subsequen@&$u)C(u,y) D(u) E(u) of the current context
with —=B(u).

It is clear by inspection of the trace that any intermediaeisions made between the
additions ofA(t(x)) andB(u) are irrelevant in making clause (4) conflicting at the point
of the Backjump application. The fact that (4) is conflicting depends onlytlom deci-
sions that lead to the propagation/Ait(x))—say, some decision litera&, . .., S, with

5 From the instance alone it should be easy to see which coméier was used in the last four rule
applications.

2.3 Adding Learning to\(€ Proof Procedures 9

Context Literal Derivation Rule Clause Instance

A(t(x)) Propagate instanceA(t(x)) v --- of some clause i
wheret(x) is a term in the variablg.

B(u)¢ Decide instanceB(u) Vv - -- of some clause iP
C(u,y) Propagate instance-B(u)\/C(u y) of (1)

D(u) Propagate instance-A(t(x)) V -C(u,t(x)) vV D(u) of (2)
E(u) Propagate instance-C(u,y) v ()of 3)

-B(u) Backjump instance-D(u) V —E(u) of (4)

Table 1: A trace of a derivation in the system B.

n> 0—and the decision to adg&(u). This means that the decision liter&8s. .., S, B(u)
will eventually produce a conflict (i.e., make some claus#laing) in any context that
contains them. The basic goal of this work is to define efftcaemflict analysis proce-
dures that can come to this conclusion automatically arme §tinto the system in such
a way thatBackjump is applicable, possibly with few propagation steps, whendire
current context happens to contain again the liteggls.. , S,,B(u). Even better would
be the possibility to avoid altogether the additionBtli) as a decision literal in any
context containinds, ..., $,, and instead add the literalB(u) as a propagated literal.
We discuss how to do these in the rest of the paper. O

Within the abstract framework of Sectibn2.2, and in peréewlogy to the Abstract
DPPL framework of Nieuwenhuist al. [NOTO0SH], learning can be modeled very simply
and generally by the addition of the following two rules te thansition system B:

Learn: AF® —= A+ ®C ifdEC
Forget: AF®C = AF® ifdoEC

In this very general formulation, learning is simply the gidt, via an application
of Learn, of an entailed clause to the clause set. While in principle could learn any
entailed clausel.earn is meant to be used to add only clauses that are more likely to
cause further propagations and correspondingly reduceutmder of needed decisions.
The intended use dforget rule is to control the growth of the clause set, by removing
entailed clauses that cause little propagation.

Because of the potentially high overhead involved in gaimaydemmas and propa-
gating them in practice, we focus in this work on only the kifidonflict-drivenlearning
that has proven to be very effective in DPLL-based solvarshé following we discuss
two methods for doing that. Both of them are directly basecadamma generation
techniqgue common in DPLL implementations. This technigae loe described proof-
theoretically as a linear resolution derivation whosdahitentral clause is a conflicting

2.4 The Grounded Method 10

clause in the DPLL computation, and whose side clauses anmses used in unit prop-
agation steps. In terms of the abstract framework abovdirtbar resolution derivation
proceeds as follows. The central clad® L is resolved with a clausk Vv D in the
clause set only it. was added to the current context bympagate step with clause
L v D. Since the net effect of each resolution step is to redladioeC vV L by L's “causes”
D, we can also see this resolution derivation asgressionprocess.

Both of the first two methods we present below lift this regies to the first-order
case, although with different degrees of generality. Tt firethod is strictly subsumed
by the second. We present it here because it is practicallyesting in its own right,
and because it can be used to greatly simplify the presentafi the second method.
The third and last method is less general. In our experimeptsised it mostly as a
sanity check against the other two methods because of ith touer overhead.

2.4 The Grounded Method

LetD = ({-v} F ®g = ... = A F ®) be a derivation in the transition system L
whereA\ contains at least one decision literal ahdcontains a claus€p conflicting in
N\. We describe a process for generating fioralemma a clause logically entailed by
@, which can bdearnedin the derivation by an application aéarn to the state\ - .

We describe the lemma generation process itself as a fmansigstem, this time
applied toannotated clausegairs of the fornC | SwhereC is a clause an&is finite
mapping{L — M, ...} from literals inC to context literals oD. A transition invariant
for C | Swill be thatC consists of negated ground instances of context literaidevs
specifies for each literdl of C the context literaM of which L is an instance, provided
thatM is a propagated literal. The mappihg— M will be used toregress L. that is to
resolve it withM in the clause used iD to addM to the context.

The initial annotated claus&y will be built from the conflicting clause db, and
will be regressedy applying to it theGRegress rule, defined below, one or more times.
In the definition ofAg and of GRegress we use the following notational conventions.
If ois a substitution an@ a clause or a literalCg denotes the expression obtained by
replacing each variable or parametefCaf by a fresh Skolem constant (one per variable
or parameter). b is a context unifier of a claudg Vv - - - V L, against some context, we
denote byL? the context literal paired with; by o.

Assume thaCy is conflicting in/A because of some context unifieg. ThenAg is
defined as the annotated lemma

Ao =Co0p | {Log — L% | L € Co andL is a propagated literl

consisting of a fresh grounding G§og by Skolem constants and a mapping of each lit-
eral ofCoag to its pairable literal in\ if that literal is a propagated literal. The regression
rule is

GRegress: DVM|SM— Lo =g DVCOU|ST if (%)

2.4 The Grounded Method 11

Lo is the propagated literal of some context unifieaind clause. v C,
where(x) = ¢ pis a most general unifier ol andLa,
T ={Nop+— N°|N € CandN° is a propagated literal

Note that the mapping is used BRegress to guide the regression so that no search
is needed. The regression process simply repeatedly apgpkeruleGRegress an ar-
bitrary number of times starting fromy and returns the last clause. While this clause
is ground by construction, it can be generalized to a nomwgtaclauseC by replacing
each of its Skolem constants by a distinct variable. As ptaweéhe next two results, this
generalized clause is a logical consequence of the curame setb in the derivation,
and so can be learned with an application ofithern rule.

To start, every regression of the initial annotated lemnth @Regress generates a
logical consequence of the clause set.

Lemma 2.3 If Ao =>;, C | S, then the following holds.

1. ForevernM — N € S M is a (ground) instance o¥.
2. The (ground) clauge is a consequence df.

Proof. Suppose a regression derivati®p =, C | S of length| > 0 as given. We
directly prove the claim by induction dn

| =0) 1. By construction oAy, M = Lap for some literalL andN is the propagated
literal L. By definition of context unifier we have thatp = Nog. SoM is a ground
instance ofN.

2. Immediately by construction, &0y is a ground instance of the closing clause.

| >0) 1. For the mappings of added by the application of the rule, the proof is
analogous to the base case. For the others, the claims hoidduztion.

2. Using the notation as introduced in tl&egress rule above, we prove first that
GRegress preserves consequenceship.

With M being a (ground) instance b6, as obtained by the induction hypothesis and
1, the most general unifigris in fact a matcher such thabp = M. Thus, the clause
D v Caopis a (ground) instance of the resolution resolvent Co of the parent clause
DV M, which is ground, and the parent clauseV Co, where the mgu used js

Now, the (ground) clause v M is a consequence df by induction assumption and
LoV Caois an instance of a clausednby construction. With the soundness of resolution
it follows thatD v Coplis a consequence df. O

Proposition 2.4 If Ag =, C | SE the clauseC obtained fromC by replacing each
constant of not in® by a fresh variable is a consequencebgf

8Here and below, we writ€ as a suggestive notation to denote a ground clause stamdimgértain
relation with another clauge.

2.4 The Grounded Method 12

-D(a)v-E(a) —C(u,y)VE(u)

-D(a) Vv —C(a,b) —A(t(x)) vV —C(u,t(x)) vD(u)
-C(a,b) v -A(t(c)) v -C(a,t(c)) —-B(u) vC(u,y)
-A(t(c)) v -C(a,t(c)) vV -B(a) -B(u) vC(u,y)
—A(t(c)) v-B(a)

Figure 1: Grounded regression-6b(u) vV -E(u).

Proof. By LemmdZ.B and the Free Constants Theorem of first ordet.logi O

From a practical viewpoint, an important invariant is tha¢ @an continue regressing
the initial clause until it contains only decision literalkhis result, expressed in the next
proposition, gives one great latitude in terms of how far tistpthe regression. In our
implementation, to reduce the regression overhead, aluhviog a common practice in
DPLL solvers, we regress only propagated literals belangrthe last decision level of
A.

Proposition 2.5 If Ag =, A andA has the forrD VM | SM — N, then theGRegress
rule applies tdA.

Proof. It is enough to show tha#l is anAssert literal in D andM is an instance oN.
The latter holds by Lemnia2.3, the former is easily provagkEraby induction on the
length of regression derivations. O

Example 2.6 Figure[1 shows a possible regression of the conflicting elai3(x) v
—E(x) in the derivation of Example.2. This clause is conflictimgause of the context
unifier op = {x+ u}, pairing the clause literalsD(x) and—E(x) respectively with the
context literalsD(u) andE(u). So we start with the initial annotated clause:

Ao = (=D(X¥)V—E(X)go [{(=D(x))g0 — (=D(x)), (=E(x))00 — (=E(x))*}
= -D(a)Vv—E(a)|{-D(a) — D(u), -E(a) — E(u)} .

To ease the notation burden, we represent the regressitie iImdre readable form of
a linear resolution tree, where at each step the centraselauthe regressed clause,
the literal in bold font is the regressed literal, and theesithuse is the clauge vC)o
identified in the precondition aBRegress. The introduced fresh Skolem constants are
a,b andc. Stopping the regression with the last resolvent in theve&an gives, after
abstracting away the Skolem constants, the lemid(z)) v ﬁB(x)H O

7 The fact that the literals in this lemma are variable digjesmot typical of the regression process. It
is just a (nice) feature of this particular example.

2.4 The Grounded Method 13

To judge the effectiveness of lemmas learned with this @®@e reducing the ex-
plored search space we also need to argue that they let tteersiater recognize more
quickly, or possibly avoid altogether, the set of decisicesponsible for the conflict in
D. This is not obvious within th&(€ calculus because of the role played by parameters
in the definition of a conflicting clause. (Recall that a ckis conflicting because of
some context unifieo iff it moves parameters only to parameters in the contestdis
associated with the clause.) To show that lemmas can havetdmeled consequences,
we start by observing that, by construction, every litéfah alemmaC=L1V---VLy
generated with the process above is a negated instance ef gmmext literakK; in A.

Let us writeC" to denote the sgtKy, ..., Km}.

Lemma 2.7 If Ao =, E | S and the clausg& is obtained fronE by replacing each
constant ofe not in ® by a fresh variable, theR is conflicting in any context that
containsEN.

Proof. See the appendix. O

Proposition 2.8 Any lemmaC produced fronD by the regression method in this sec-
tion is conflicting in any context that contai@$.

Proof. Follows immediately from Lemmia3.7 O

PropositioZ1B implies, as we wanted, that having had tirerlaC in the clause
set from the beginning could have led to the discovery of dliobsooner, that is, with
less propagation work and possibly also less decisionsith&n Moreover, the more
regressed the lemma, the sooner the conflict would have heewvdred.

Example 2.9 Looking back at the lemmas generated in Exarlfiplé 2.6, it ig #Easee
that the lemma-C(x,y) V —A(t(z)) vV —C(x,t(z)) becomes conflicting in the derivation of
Table[1 as soon &(u,y) is added to the context. In contrast, the more regresseddemm
-A(t(z)) v —B(x) becomes conflicting as soon as the deci8om) is made. O

Since a lemma generated frdmis typically conflicting once aubsetof the deci-
sions inA\ are taken, learning it in the stafe- ®, Cy will help recognize more quickly
these wrong decisions later in extension®dhat undo parts of\ by backjumping. In
fact, if the lemma is regressed enough, one can do even hetfesompletely avoid the
conflict later on if one uses a derivation strategy that psefg@plications oPropagate
to applications obecide.

Example 2.10 Consider an extension of the derivation in Table 1, wherecth@ext
has been undone enough that now its last liter#{(i$x)). By applyingPropagate to
the lemma-A(t(z)) v —B(x) it is possible to ada-B(x) to the context, thus preventing

2.5 The Lifted Method 14

the addition ofB(u) as a decision literal (becaugu) is contradictory with—B(x))
and avoiding the conflict with clause (4). With the less regeel lemma-A(t(z)) v
—C(x,t(2)) it is still possible to add-B(x), but with two applications oPropagate—to
the lemma and then to clause (1). O

So far, what we have described mirrors what happens withgsitipnal clause sets
in DPLL SAT solvers. What is remarkable about learning attflevel, in addition to
that it does have the same nice effects obtained in DPLL aisith lemmas are not just
caching compactly the reasons for a specific conflict. Fandaifirst-order formula,

a lemma iNME represents amfinite class of conflicts of the same form. For instance,
the lemma-A(t(z)) vV —B(X) in our running example will become conflicting once the
context containgnyinstance ofA(t(z)) andB(x), not just the originaA(t(x)) andB(u).

Our lemma generation process then does learning in a mopepeense of the
word, as it can generalize over a single instance of a cordiict later recognizenseen
instances in the same class, and so lead to additional jprofithe search space.

A slightly more careful look at the derivation in Tallé 1 stsotihat the lemma
-A(t(z)) v -B(x) is actually not as general as it could be. The reason is thana c
flict arises also in contexts that contain, in addition to arstance ofB(x), also any
generalizationof A(t(z)). So a better possible lemma-ig\(z) V -B(x). We can pro-
duce generalized lemmas like the above by lifting the regipasprocess similarly as in
Explanation-Based Learning (cf. Sectldn 1). We descrilifited process next.

2.5 The Lifted Method

Consider again the derivatidnd from the previous subsection, whose last state ®
contains a clausgg that is conflicting inA because of some context unifiey. Starting
with the annotated lemma

ColS = Cooo|{Lop+ L% |L €CoandL® is a propagated literl
one can build a regression of the form
Gl =eClTH =g ... = C| Th.

We have seen that this regression determines a linear tiesotlerivation,whose deriva-
tion tree is depicted in Figuid 2(a), whetg andD; are instances of clausesdn and
Ci,, is aresolvent o€ andD;j for alli =0,...,n— 1. Using basic results about resolu-
tion and unification, this derivation can be lifted to onelwf form shown in Figurgl 2(b)
whereCy and eactD; are the clauses i thatC{, andD; are instances of, and eaCh 1
is a resolvent o€ andD{ and a generalization @, ;.

Conceptually, the lifted derivation can be built simply lmjidwing the steps of the
grounded derivation, but this time using the original cksig @ for the initial central

clause and the side clauses. In practice of course, thd lifegivation can be built

2.5 The Lifted Method 15

c, D, Co. Do
C’l ‘D/ C D,
G, G,
-'\ .Di‘*l N Dn-1
C, Cn
(a) (b)

Figure 2: Grounded regression derivation and its lifting.

directly, without building the grounded derivation first.e\Mlo this by starting with the
annotated lemm@y | S =Co | {L — L% | L € Co andL is a propagated liter and
regressing that lemma with the following lifted versionGrRegress:

Regress: DVM|SM+—Lo = (DVC)U|ST if (%)

Lo is the propagated literal of some context unifieaind clausé. v C,
Ly VC, is a fresh variant of VC,

Ul is a most general unifier &l andL,, and

T ={Nyu— N°| N € C, andNC is a propagated literal

where(x) =

Proposition 2.11 For every grounded regression
Gl =eCi T =g...=aCi|Th,
there is a lifted regression
Co|S9S='C|Thi=...=Cy| Ty,
such tha€; > C/ and® = C; foralli=0,...,n.

Proof. The grounded regression can be written as a linear resoldgoivation from

ground instances of clauses fran Using standard lifting arguments (s€e [C1.73]) this

derivation can be lifted to a derivation using the clausesf instead of their instances,

which, in turn, can be written as the lifted regression atedtarhis prove€; > C/.
Regardingp = C;, observe thaty € @ and, according to the just said,is a resolu-

tion resolvent ofS;_; and some clause from, for alli =1,...,n. Then® = C; follows

by the soundness of the resolution inference rule. O

As in the grounded case then, we can use any regressed €asa lemma. In
contrast, this time there are no constants to abstract.eastjiession process resolves
only input clauses dE. Again, the resulting clause is a logical consequenca®.of

2.6 The Propositional Method 16

“D(X)V-E(X) —C(x1,y1) VE(x1)

—D(x) V-C(X,y1) —A(X2) V -C(y2,X%2) V D(y2)
=C(X,y1) V-AX2) V —C(X,X2) -B(x3) VC(x3,Y3)
=A(X2) V =C(X,X2) V =B(X) —B(x4) VC(X4,Ya)
-A(X2) V —B(X)

Figure 3: Lifted regression ofD(x) V —E(X).

Example 2.12 Figure[3 shows the lifting of the grounded regression in Fadd for
the conflicting clause-D(x) V —=E(x) in the derivation of ExamplEZ2.2. This time, we
start with the initial annotated claus¢:-D(x) V —=E(X)) | {=D(x) — D(u), =E(x) —
E(u)} . As before, we represent the regression as a linear resoltrée, where this
time at each step the central clause is the regressed cthadieral in bold font is the
regressed literal, and the side clause corresponds tagtheetl, v C, in the precondition
of Regress. The lemma learned in this case-i8\(z) V -B(x). O

2.6 The Propositional Method

Recall that each propagated litekain a context is the result of a unification of a clause
in the clause set with some previous context litekals . . ,K,. This sort of dependency
of L on Ky,...,K, defines adependency grapbver context literals (whose roots are
the context’s decision literals) that can be used for canfli@lysis. In fact, ilC is a
conflicting clause in a context because of some context unifiey starting from the
context literals used by and tracing the dependency graph backwards, one can pre-
cisely determine the sdL,,..., Ly} of decision literals that are ultimately responsible
for the conflict. Then one could simply remember this set aisiens and make sure
that they are not repeated again. The way we do this is toaabstach.; by a unique
(modulo p-renaming) propositional varial#e add the propositional clauggV - -- Vv P
to the clause set, and from then on dldb the context each timlg is added. Then the
clause will become conflicting every timg, ..., Lx occur together again in a context.
By applying Propagate to these propositional clauses, one can even avoid the confli
by not addingL; again as a decision literal & is present in the context.

The appeal of this method is that it is relatively cheap toegete and process this
sort of lemmas. The downside is that these lemmas are lessaéiman those computed
with the previous methods, as they just cachespecific set of conflicting decisions.

3 Implementation

We implemented the three learning methods described inrh@qus section, in our
ME theorem proveDarwin We briefly discuss this implementation and comment on
a few details for improving performance.

8|t tp: /7 goedel . cs. Ui owa. edu/ Darw n/ |

http://goedel.cs.uiowa.edu/Darwin/

3.1 Lemma Generation 17

3.1 Lemma Generation

Since we merely take the relevant decision literals for dlmras the pseudo-lemma
in the propositional abstraction, the lemma generatiorhots of interest are grounded
and lifted regression. For both cases we employ memoiz&ti@void regressing the
same context literal more than once.

In the case of the grounded regression, memoization is doplicitly. Recall that
here each literal to regress corresponds to a (negatedhdjinostance of a propagated
context literal, which in turn depends itself on previousitext literals in the context.
It is easy to see that these dependencies between conesatditletermine a directed
graph, called &onflict graphin the SAT literature, whose roots are the context literals
associated to the conflict clause and whose leaves areatetitsrals. In the regression
process, the literals in the current clause are regressaa ander that corresponds to a
breadth-first exploration of the associated conflict graahong the literals at the same
depth level in the graph, instances of more recent contexals are regressed first. This
makes sure that all instances of the same context literakgressed in a row. Now, by
simply keeping the literals to regress in a set, each liisralitomatically regressed only
once.

The process is not as simple for the lifted method, as it ireg@rinvolves unification
operations, as opposed to just matching operations in thended case. More precisely,
the regression process is implemented by maintaining tle¢@ structures, a set of
all the literals in the central clause that we want to regrasset ofregressediterals
(or regression séf literals that will not be regresses further according ame stop
criterion, and set of unification constraints. If a literabsen from the first set is not to
be regressed, for example because it is paired with a dediséoal, then it is simply
moved to the second set. Otherwise, it is replaced by thmlstén the corresponding
side clause, and the unifier of the corresponding resolgiep is added to the set of
unification constraints. The regression stops when thedatsis empty. At that point,
the unification constraints are solved, and the resultirifenris applied to the set of
regressed literals, thus producing the lemma clause.

In this process memoization is achieved by doing the regmesiepth-first, based
on the order of the context literals to regress. For eactessgd literal its regressed
literals and contraints are stored. Whenever the samalliteto be regressed again, this
information is reused by creating a copy using fresh vaeisbAs an optimization and
similar to the grounded case, a context literal is regressdgonce if it is an instance
of a ground clause literal.

9As described in[BET0@b] this does not require the creatiamew terms, but merely replacing integer
offsets.

3.2 Regression Depth 18

3.2 Regression Depth

In analogy to the common procedure in SAT solvers, onlyditepropagated after the
most recent decision literal responsible for the confliet megressed. But in contrast
this is not necessarily the most recent decision level. iBhigcause, as allowed by the
Backjump rule, Darwin only backtracks up to and including the most recent decision
literal responsible for the conflict. This has the effecttthanegated decision literal
does not necessarily depend on the current decision lewektherefore a closure might
not depend on the most recent decision literal. In conttast,favored backjumping
method in propositional solvers backtracks up to but exolythesecondmost recent
responsible decision literal. Thus, propositional backjing backtracks farther and is
in a sense more eager. Experimental results have showrhthahore eager form of
backjumping is not beneficial iDarwin, as the right split does in general not prevent
the jumped over decision literals and the subsequent patioag from being reasserted.
Most of the times eager backjumping does not change thetsepece in a beneficial
way, but instead introduces additional overhead.

An important optimization for propositional solvers is riotstop the regression at
the most recent responsible decision literal, but alreadyaique implication point (UIP).
Itis unclear how to lift this idea to the first-order levelptigh, as in general there may be
several, distinct instances of a propagated literal useddlosure. The naive approach
of treating all instances of the same context literal as emg@l UIP did not turn out to
be efficient in practice. Furthermore, while the UIP can hentbautomatically in the
grounded regression, namely when the regression set nsrmaly instances of exactly
one context literal, this is not possible using the deptt-pproach of the lifted regres-
sion. Here, either the regression needs to be done breasithiiit then memoization
cannot be used, or the UIP must be computed before the aetyralssion is performed.

As a side note we point out that, for the same reason as almlike for the proposi-
tional case lemmas can not be used in general to make theiegpldition of the negated
decision literal unnecessary after backjumping. For exapgppossible derivation part
based on the claus®a, b) V Q(a,x), =P(a,b) vV =Q(a,c), P(x,b) vV =Q(x,X), is Decide
of Q(a,x), Propagate of —P(a,b), andFail. This yields the grounded and lifted lemma
-Q(a,d) vV -Q(a,a). While this lemma does become conflictingDiécide of Q(a,X)
is applied again, it does not prevent that applicatiomeéide. To do that, the lemma
would need to be unit. Due to their increased generalitg, tdmds to happen more often
with lifted than with grounded lemmas, makiRgopagate sometimes less efficient with
lifted lemmas.

3.3 Simplification

The lemma computed in the grounded and lifted regressiommigliied before usage.
Note that a context literal asserted in the root decisiogl|dtat is before any decision

3.4 Application 19

literal is added to the context, is never regressed acaptdithe description above. But,

as it is implied by the clause set, its grounded regressi@s @doessence correspond to
a unit resolution step. As a consequence, root assert ¢ditezals do not need to be

and are not added to the lemma. For the lifted regressionade is more complicated,

as it is only directly applicable if the context literal is arstance of a unit clause. As

in addition the contraint has to be computed as usual, whicdoime cases leads to a
significant overhead due to too many constraints, root ssaee not handled special

here.

Simplifying the lemma is particularly important in the &fl case because it is not
unusual for the lemma regression process to produce vegyleanmas, with several
instances or variants of the same literal. As condensingaskpensive, we employ a
simpler method which produces good results in practice witimear number of uni-
fication tasks. If all instances of the same context litenahilemma have a common
instance, they are replaced by their most general commaamicss, and the correspond-
ing unifier is applied to the remainder of the lemma. Thentilif several variants of a
literal occur, they are condensed into one literal, and émaming is again applied to
the remainder of the lemma. Finally, duplicates of litelae removed (as clauses are
treated as sets of literals).

Unfortunately, this method sometimes simplifies the lemman unwanted way,
making it in effect useless. For example, if in a context iteedls—A(a), —-B(a), -B(b),
and—C(b) lead to a conflict, then the learnt grounded lemma migh&® \ B(a) v
B(b) v C(b), and the more general lifted lemma might Aé&) v B(x) vV B(y) v C(y).
Now, its simplification,A(x) v B(x) V C(x), can not be used to prevent the recreation of
the conflicting context, and in fact not even to close on it.

3.4 Application

In principle, during a derivation of the proof procedure faas can be used like any
other clause as far as the rulescide, Propagate, andFail are concerned. As alemma’s
purpose is to prune the search space, appliagde to lemmas does not seem like
a sensible choice, as confirmed by our experimental reslsing lemmas forFail
applications and for selected application®afpagate turned out to be the most efficient
usage.

Furthermore, to reduce the context unifier computationtoed, potential propaga-
tions for a new lemma are not computed in retrospect, butwhign adding a literal to
the context unifies with the lemma. Therefore, when aftergpli@ation ofBackjump
a lemma is learnt, it does not propagate the negated dedisicad L°°. This happens
only, as an optimization, if the lemma is unit, which mightfat propagate a strictly
p-preservingly more general literal th&R°. In conjunction with the above described
shortening of grounded lemmas with root context literddss tase occurs more often in
the grounded than the lifted case, making the grounded lesomatimes more effective

3.5 Forget 20

than the corresponding lifted one.

In general, applications ®fropagate are restricted iDarwin to those withuniversal
propagated literals (i.e., containing no parameters). idgldon-universal propagated
literals to the context is not only unnecessary for compless but also counterproduc-
tive for efficiency because it substantially increases timalver of context unifiers usable
by Decide or Propagate. On the other hand, adding literals propagated by a lemma is
useful to avoid conflicts, as we discussed earlier in the pdpehe current implemen-
tation, we strike a balance between these two conflictingsbg adding to the context
a non-universal propagated literal only if the propagatitagise has been learned as a
lemma at leash times in the derivation—a crude but easily computed esténohthe
lemma’s usefulness in avoiding future conflicts. Experitatiyy a value oin = 3 seems
to give the best results.

3.5 Forget

At the moment we have implemented only a relatively unsdjglaited scheme for for-
getting lemmas, again inspired by similar schemes in the IgéfRture. In this scheme,
there exists an upper limitand a lower limitl on how many lemmas are stored at any
time. If a new lemma is learned aftehas been reached, th@rstlemmas are removed
until there are only lemmas left. The new lemma is then added to this smaller lemma
set.

The value of a lemma is determined by a score, which is ilyjtset to the worst
score among the existing lemmas. Whenever the lemma isnsify® for an appli-
cation of Fail, i.e., the lemma is involved in the regression of a conflits,score is
incremented by 1. When the worst lemmas are removed, alesare divided by 2.
As an alternative, we also tried to decay the score peritigiatter a certain number of
Backjump applications. This score is not currently used in the h&asigor choosing
which lemma to propagate on, mostly because it is not trigiahtegrate properly into
the system’s architecture. Unfortunately, these schemdasodlead to any improvement
over not applyingForget at all.

4 Experimental Evaluation

In this section we present our initial experimental evabradf the three learning meth-
ods presented above. We considered over two different gmobkts.

4.1 First problem set

We first evaluated the effectiveness of lemma learnirigarwin over the TPTP problem
library version 3.1.1. SincBarwin can handle only clause logic, and has no dedicated

4.1 First problem set 21

Method Solved Avg Total Speed Failure Propag. Decide
Probls Time Time up Steps Steps Steps
no lemmas 896 2.7 2397.0 1.00 24991 597286 45074
propositional 895 2.8 2507.6 0.96 20056 570962 37102

grounded 895 24 21356 1.12 9476 391189 18935
lifted 898 24 21734 110 9796 399525 19367
no lemmas 244 3.0 713.9 1.00 24481 480046 40766
propositional 243 3.4 821.1 0.87 19546 453577 32794
grounded 243 1.8 445.1 1.60 8966 273849 14627
lifted 246 2.0 493.7 1.45 9286 282600 15059

no lemmas 108 5.2 555.7 1.00 23553 435219 38079
propositional 107 4.5 478.8 1.16 18703 392616 30209

grounded 108 2.2 228.5 2.43 8231 228437 12279
lifted 111 2.6 274.4 2.02 8535 238103 12688
no lemmas 66 5.0 323.9 1.00 21555 371145 34288
propositional 66 4.5 289.7 1.12 17044 333648 27026
grounded 67 1.7 111.4 291 6973 183292 9879
lifted 70 2.3 151.4 2.14 7275 193097 10294

Table 2: Problems that respectively take at least 0, 3, 20,1860 applications oBack-
jump without lemmas within 300s, whei®olved Problemsgives the number of prob-
lems solved by a configuration, while the remaining valuesfar the subsets of 894,
241, 106, 65 problems solved Bl configurations.Avg Time (Total Time) gives the
average (total) time needed for the 894 problems solvedilopafigurations Speed up
shows the run time speed up factor of each configuration sdrsione with no lem-
mas.Failure, Propagate andDecidegive the number of rule applications, wilailure
including bothBackjump andFail applications.

inference rules for equality, we considered only clausabj@ms without equality. Fur-
thermore, aParwin never applies th®ecide rule in Horn problems [Fuc04], and thus
also never backtracks, we further restricted the seletdioon-Horn problems only. All
tests were run on Xeon 2.4Ghz machines with 1GB of RAM. Theoseg limit on the
prover were 300s of CPU time and 512MB of RAM.

The first 4 rows of TablEl2 summarize the results for variougigarations oDar-
win, namely, not using lemmas and using lemmas with the prapoalf grounded, and
lifted regression methods.

The first significant observation is that all configuration$/e almost exactly the
same number of problems, which is somewhat disappointirge Situation is similar
even with an increased timeout of one hour per problem. A §agpf the derivation

4.1 First problem set 22

traces of the unsolved problems, however, reveals thatdbetain only a handful of
Backjump steps, suggesting that the system spends most of the timepagation steps
and supporting operations such as the computation of comtéfiers.

The second observation is that for the solved problems @nelsspace, measured in
the number obecide applications, is significantly pruned by all learning metkgwith
18% to 58% less decisions), although this improvement ig ordrginally reflected in
the run times. This too seems to be due to the fact that masttiens involve only a
few applications oBackjump. Indeed, 652 of the 898 solved problems require at most
2 backjumps. This implies that only a few lemmas can be lehraed thus their effect
is limited and the run time of most problems remains unchdn@ased on these tests,
it is not clear if this an intrinsic property of the calculas) artifact of the specific proof
procedure implemented lWyarwin, or a feature of the TPTP library.

For a more meaningful comparison, the rest of Table 2 shogvsdme statistics, but
restricted to the problems solved by the no lemmas configuratsing, respectively, at
least 3, 20, and 100 applications Béckjump within the 300s time limit. There, the
effect of the search space pruning is more pronounced arsltdeslate into reduced
run times. In particular, the speed up of each lemma confiiguravith respect to the
no lemmas one steadily increases with the difficulty of thebf@ms, reaching a factor
of almost 3 for the most difficult problems in the groundedecaloreover, the lifted
lemmas configuration always solves a few more problems th@and lemmas one.

Because of the walarwin’s proof procedure is designed [BET06c], in addition to
pruning search space, lemmas may also cause changes taénenowhich the search
space is explored. Since experimental results for unsailefproblems are usually more
stable with respect to different space exploration orders,instructive to separate the
data in TabléR between unsatisfiable and satisfiable prabl&hmese data are provided
respectively in Tablgl3 and Tallk 4.

The separated results for unsatisfiable and satisfiabldgonsbshow the same pat-
tern as the aggregate results in Tdble 2. It is interestingtice, however, that for the
unsatisfiable problems solved by all configurations andesbly the no lemmas one
with at least 0, 3, 20, and 100 backjumps the speed up facdiogrdunded lemmas are
respectively 1.07, 1.55, 3.74, and 4.19. This actually cameg more favorably overall
to the corresponding speed up factors in Téble 2: resp., 1.6Q, 2.43, and 2.91.

Plotting the individual run times of the no lemmas configraiagainst the lemma
configurations, and the grounded against the lifted lemroafguration for all solved
problems with at least 3 backjumps, as seen in Figlure 4 lglslaows the positive effect
of learning. For nearly all of the problems, the performantéhe grounded lemmas
configuration is better, often by a large margin, than thewitie no lemmas. A similar
situation occurs with lifted lemmas, although there areaymoblems for which the no
lemmas configuration is faster. In contrast, the plot forghapositional configuration
looks considerably different, with few outliers for eithmnfiguration and basically all
points closely clustered around the diagonal. Finally,abeparison of the grounded

4.1 First problem set 23

Method Solved Avg Total Speed Failure Propag. Decide
Probls Time Time up Steps Steps Steps
no lemmas 563 3.3 18274 1.00 22741 495924 35831
propositional 562 35 19755 0.92 18478 476066 28959

grounded 561 3.0 1705.2 1.07 8336 294819 11620
lifted 562 3.1 17318 1.05 8610 300273 12004
no lemmas 193 1.9 364.4 1.00 22283 419920 35121
propositional 192 2.7 508.9 0.72 18020 399969 28249
grounded 191 1.2 2347 1.55 7878 218739 10910
lifted 192 1.4 2714 1.34 8152 224587 11294
no lemmas 89 2.9 2556 1.00 21589 388200 34109
propositional 89 2.4 216.2 1.18 17390 352350 27328
grounded 90 0.8 68.2 3.74 7352 188032 10216
lifted 90 1.2 103.1 2.48 7615 194755 10581
no lemmas 61 3.7 226.4 1.00 20157 351521 32011
propositional 61 3.1 190.8 1.19 16169 317696 25570
grounded 61 0.9 54.0 4.19 6484 163481 9058
lifted 62 14 88.2 2.57 6748 170424 9429

Table 3: Unsatisfiable problems that respectively takeest I8, 20, and 100 applications
of Backjump without lemmas within 300s, whefolved Problemsgives the number of
problems solved by a configuration, while the remaining eslare for the subsets of
561, 191, 89, and 61 problems solved by all configurations.

and lifted learning methods shows that the gained genew@ithe latter almost never
pays off in terms of run time, except that it allows the systersolve three additional
problems.

Overall, the results above indicate that the propositionathod is not nearly as
effective at pruning the search space or decreasing themenats the other two learn-
ing methods, confirming our hypothesis that generalizingspaff. They also show
that lifted lemmas generate mobecide applications and have higher overhead than
grounded lemmas. The larger number of decision steps offted method versus the
grounded one seems paradoxical at first sight, but can baiegdl by observing that
lifted lemmas—in addition to avoiding or detecting earhaggker number of conflicts—
also cause the addition of more general propagated litevadscontext, leading to a
higher number of (possibly useless) context unifiers. feuntore, due to the increased
generality of lifted lemmas and the the way they are condknd®n they are too long,
sometimesPropagate applies to a grounded lemma but not the corresponding lifted
lemma, making the lattdesseffective at avoiding conflicts (see Sect[dn 3).

4.2 Second problem set 24

Method Solved Avg Total Speed Failure Propag. Decide
Probls Time Time up Steps Steps Steps
no lemmas 333 1.7 569.6 1.00 2250 101362 9243
propositional 333 1.6 5321 1.07 1578 94896 143

grounded 334 1.3 4304 1.32 1140 96370 7315
lifted 336 1.3 4416 1.29 1186 99252 7363
no lemmas 51 7.0 3495 1.00 2198 60126 5645
propositional 51 6.2 3122 112 1526 53608 4545
grounded 52 42 2104 1.66 1088 55110 3717
lifted 54 44 2223 157 1134 58013 3765
no lemmas 18 17.7 300.1 1.00 1964 47019 3970
propositional 19 9.4 160.3 1.87 879 40405 2063
grounded 21 101 1713 1.75 920 43348 2107
lifted 18 154 2626 1.14 1313 40266 2881
no lemmas 5 24.4 975 1.00 1398 19624 2277
propositional 5 24.7 98.9 0.99 875 15952 1456
grounded 6 144 574 1.70 489 19811 821
lifted 8 158 63.2 1.54 527 22673 865

Table 4. Satisfiable problems that respectively take at [®£a20, and 100 applications
of Backjump without lemmas within 300s, whefolved Problemsgives the number of

problems solved by a configuration, while the remaining eslare for the subsets of
332, 50, 17, and 4 problems solved by all configurations.

The higher overhead of the lifted method can be attributed/domain reasons. The
first is of course the increased number of context unifiersetocdnsidered for rule ap-
plications. The second is the intrinsically higher costhu# tifted method versus the
grounded one, because of its use of unification—as opposethtching—operations
during regression, and its considerable post-processarg i removing multiple vari-
ants of the same literals from a lemma—something that ogquits often.

4.2 Second problem set

Given that only a minority of the TPTP problems we could uséhim first exper-
iment cause a considerable amount of search and backtgackia that, on the other
hand, many decidable fragments of first-order logic are ldRLhwe considered a second
problem set, stemming from an applicatiorD&rwin for finite model finding[[BET06a].
This application follows an approach similar to that of syss like Paradox [CS03]. To
find a finite model of a given cardinality, a clause set, with or without equality, is con-

4.2 Second problem set 25

100 T T B P 100 T T ~+
R b
A] /;/ +
/}#/ + ES /ﬁ/ +
- 1ot - 10 .
< A+ * 3 ET
c + T
§ 4 < = N S+
> 1 T F . et
i Pt 7 ir g %»—‘br 7
T JRE=cik
AT A+
AT+ 1+ FH+++ o+
0.1 k= ' ' 0.1 4= ' '
0.1 1 10 100 0.1 1 10 100
no lemmas no lemmas
100 T T — 100 T T -
7 4’15
T+ + .-
A7 e
A -
B L L e + +
s 10f £ . - 1o 4
e L
S ,if* 3 .
D o 2 +
= b 3 oA
s 1 + i E bt 1 A .
= + + 4
1% A
A+ A+
T A+ o+ + T+ +
0.1 &< L ' 0.1 &= L '
0.1 1 10 100 0.1 1 10 100
no lemmas lifted

Figure 4. Comparative performance, on a log-log scale, ifterént configurations for

problems with at least 3 applications Bfickjump. For readability, the cutoff is set at
100s instead of 300s, because in all cases less than a hahgfablems are solved in
the 100-300s range.

verted into an equisatisfiable Bernays-Schonfinkel prabjimstead of a propositional
problem as in Paradox) that includes the cardinality retitn.

If Darwin proves the latter clause set unsatisfiable, it increasegalbe ofn by 1
and restarts, repeating the process until it finds a modeti-darerging if the original
problem has no finite models. SinBarwin is a decision procedure for the Bernays-
Schonfinkel class, starting withabove at 1, it is guaranteed to find a finite model of
minimum size if one exists. In the configurations with leagniDarwin uses lemmas
during each iteration of the process and carries over toélReiteration those lemmas
not depending on the cardinality restriction. Since a ruger @a/problem with a model of
minimum sizen includesn — 1 iterations over unsatisfiable clause sets, it is reasenabl
to consider together all theiterations in the run when measuring the effect of learning.

Table[® shows our results for the 815 satisfiable problembeofPTP library. To
give an idea how we compare to other systems, we remark thet MaMVicC03] and
Paradox 1.3, currently the fastest finite model finders alskgl respectively solve 553
and 714 of those problems, makibarwin second only to Paradox.

In general, solving a problem Darwin with the process above requires significantly
more applications oBackjump than for the set of experiments presented earlier. As a
consequence, the grounded lemmas configuration perfogngisantly better than the

26

Method Solved Average Total Speed Failure Propagate Decide
Probls Time Time up Steps Steps Steps

no lemmas 657 5.6 3601.3 1.00 404237 16122392 628731
propositional 658 4.4 2827.1 1.27 198023 7859965 351236
grounded 669 3.3 2106.3 1.71 74559 4014058 99865
lifted 657 4.7 30439 1.18 41579 1175468 68235

no lemmas 162 17.8 2708.6 1.00 398865 15911006 614572
propositional 163 13.0 1971.1 1.37 193302 7659591 338074
grounded 174 7.9 1203.1 2.25 70525 3833986 87834
lifted 162 14.0 2126.2 1.27 38157 1023589 57070

no lemmas 52 36.2 1702.9 1.00 357663 14580056 555015
propositional 53 20.5 961.9 1.77 161851 6540084 291492
grounded 64 10.5 4953 344 53486 3100339 64845
lifted 57 11.5 538.7 3.16 26154 678319 39873

Table 5. Satisfiable problems that transformed to a finiteehoegbresentation respec-
tively take at least 0, 100, and 1000 applicationBafkjump without lemmas within
300s, wheresolved Problemsgives the number of problems solved by a configuration,
while the remaining values are for the subsets of 647, 15ZrdiGlems solved bll
configurations.

no lemmas configuration, solving the same problems in abalftttne time, and also
solving 12 new problems. The lifted configuration on the pthend performs only
moderately better. Although the search space is significaetiuced, the overhead of
lemma simplification almost outweighs the positive effadftpruning. Restricting the
analysis to harder problems shows that the speed up fagjoowhded lemmas increases
gradually to about 3.5. This confirms that lemmas do haverafgignt positive effect if
the focus in solving a problem lies on search instead of caimstpropagation.

5 Conclusion and Further Work

We have introduced three methods for implementing conlted learning in proof
procedures for the Model Evolution calculus. The methodg various degrees of gen-
erality, implementation difficulty, and practical effagness. Our initial experimental
results indicate that for problems that are not trivialljvable by theDarwin implemen-
tation and do not cause too much constraint propagation etthods have a dramatic
pruning effect on the search space. The grounded methoeMeows the most effective
at reducing the run time as well.

We plan to investigate the grounded and the lifted methodkdt possibly adapting

REFERENCES 27

to our setting some of the heuristics developed in [SE94]jrdler to make learning more
effective and reduce its computational overhead. We almotplevaluate experimentally
our learning methods with sets of problems besides thod®ifPTP library.

References

[AS92]

Owen L. Astrachan and Mark E. Stickel. Caching and b&aizing in Model
Elimination Theorem Provers. In Deepak Kapur, edifdith International
Conference on Automated DeductiarNAI 607, pages 224—-238. Springer-
Verlag, 1992.

[BFTO6a] Peter Baumgartner, Alexander Fuchs, and CesardliTiFirst-order meth-

ods for computing finite and minimal finite models. In Prefiarg May
2006.

[BFTO6b] Peter Baumgartner, Alexander Fuchs, and CesadliTiimplementing the

[BFTO6¢]

[BTO3a]

[BTO3b]

[CL73]

[CS03]

[Fuc04]

Model Evolution Calculus.International Journal of Artificial Intelligence
Tools 15(1):21-52, 2006.

Peter Baumgartner, Alexander Fuchs, and Cesar@liTi Lemma learning
in the model evolution calculus. Technical report, The @rsity of lowa,
2006.

Peter Baumgartner and Cesare Tinelli. The Modelll#ian Calculus. In
Franz Baader, edito©ADE-19 — The 19th International Conference on Au-
tomated Deductionvolume 2741 olecture Notes in Artificial Intelligenge
pages 350-364. Springer, 2003.

Peter Baumgartner and Cesare Tinelli. The Modelllian Calculus.
Fachberichte Informatik 1-2003, Universitat Koblenmtau, Universitat
Koblenz-Landau, Institut fir Informatik, Rheinau 1, D&% Koblenz,
2003.

C. Chang and R. LeeSymbolic Logic and Mechanical Theorem Proving
Academic Press, 1973.

Koen Claessen and Niklas Sorensson. New technifjaé$mprove mace-
style finite model building. In Peter Baumgartner and ClaisG. Fermiller,
editors,CADE-19 Workshop: Model Computation — Principles, Aldaris,

Applications 2003.

Alexander Fuchs. Darwin: A Theorem Prover for theddicEvolution Cal-
culus. Master’s thesis, University of Koblenz-Landau, 200

REFERENCES 28

[GPO0O] Matthew L. Ginsberg and Andrew J. Parkes. Satisfiglalgorithms and
finite quantification. In Anthony G. Cohn, Fausto Giunclagland Bart
Selman, editorsPrinciples of Knowledge Representation and Reasoning:
Proceedings of the Seventh International Conference (BB02 pages 690—
701. Morgan Kauffman, 2000.

[Lov78] D. Loveland.Automated Theorem Proving - A Logical Basikrth Holland,
1978.

[LS01] Reinhold Letz and Gernot Stenz. Model elimination @onnection tableau
procedures. In Alan Robinson and Andrei Voronkov, editétandbook of
Automated Reasoninghapter 28, pages 2017-2114. Elsevier, 2001.

[McCO03] William McCune. Mace4 reference manual and guidechhical Report
ANL/MCS-TM-264, Argonne National Laboratory, 2003.

[NOTO5] Robert Nieuwenhuis, Albert Oliveras, and Cesaneelli. Abstract DPLL
and abstract DPLL modulo theories. In F. Baader and A. Vorenkd-
itors, Proceedings of the 11th International Conference on LogicHro-
gramming, Artificial Intelligence and Reasoning (LPAR’08)ontevideo,
Uruguay, volume 3452 ot ecture Notes in Computer Scienpages 36-50.
Springer, 2005.

[SE94] A. Segre and C. Elkan. A high-performance explanatiased learning al-
gorithm. Artificial Intelligence 69:1-50, 1994.

29

A Proofs

LemmalZ1 If Ag =4 E | Sand the claus& is obtained fronE by replacing each
constant ofe not in ® by a fresh variable, thek is conflicting in any context that
containsE”.

Proof. Suppose a regression derivatiég —, E | Sof lengthl > 0 as given. We
directly prove the claim by induction dn

| = 0) By construction ofA, E is the claus€q0p, a ground instance of some cla&g
which is conflicting inA because of the context unifigs. If Co=L1V--- VL, for some
n > 0, the context unifieog of Cy exists against any context containifig?®,...,L3},
which is, by definition, the sd&”.

The constants i€o0p and not in® are just the fresh constants introduceddyy
Thus,E = Cyop. Because any standard unification algorithm computes idempuni-
fiers, it is safe to assume that the context unifigris idempotent. It followsCoop =
Co0000, and thussg is a context unifier oE against any context containif(°, ..., L3}

| > 0) We use notation similar as introduced in thRegress rule above. Thus let
DVM|S, M+ Lo=, DVCol|S,T

be the lasGRegress application (i.e.E = D v Co}). We assume by induction the result
to hold forD v M, i.e., thatD v M is conflicting in any context that contai® v M)",
whereD Vv M is obtained fronD VV M by replacing each constant Bfv M not in @ by
a fresh variable. We will directly show that under these agstionsE = D v Cop is
conflicting in any context that contaifs".

Let (DVM)N = {K?,... K8, M®}, whereD =Ky V --- V Kp, for somem > 0, and
0 the context unifier such th@ Vv M is conflicting withA because 0b. AsDV M is
conflicting with A because ob, d moves parameters to parameters only. More precisely,
by constructiorD v M is parameter-free, and the only parameters moveliday thus be
assumed to be those {KK?,...,Kg,M®}, and it holds(Par({K?,...,Kg,M®}))5 C V.
We will need this result further below.

By the above notation, the claugds of the formD Vv Coy, for some context unifier
o of a clausd. \V C against some context literals &f whereLo is a propagated literal
andp is a most general unifier &fl andLo (in fact, uis a matcher of.o to M, asM is
ground). For further use below, we write the claliseC asLVv L,V ---V L, for some
n> 0. The literals paired with \ C by o then are denoted b{L°,LY,... L5}

The substitutionu can be written ag = |f oy, wherey! is a mgu ofVl andLa (in fact,
a matcher of.o to M) andy is a substitution that moves all the parameters and vagable
in M to the fresh constants such thdyy = M. Assume thaty has furthermore been
extended to move all the remaining parameters and varigbfésy to fresh constants.
It follows Cop = Coply, and, withE = D vV Copwe getE = D v Call.

30

With (DV M) = {K?,... K8 M3} from above andL,LJ,...,LI} being the liter-
als paired with. v C by o we get(D v Co)" = {K?,... K3 LY,...,L9} (= EM).

It remains to prove thab v Colf is conflicting in any context that contairi® Vv
Cop)M. For this, we show that the substitutian/s is a context unifier oD v Copl
againstA with paired literals{K?,...,K3 L9,...,L3}. It suffices to take a literak;
from D and a literalLj from C arbitrary and to show that

1) (a)Kijoud= K_Fcru’é and (b)(Ljol)opd = L_‘j’cm’é, and

(2) (a)(Par(KP))oUd CV and (b)(Par(L?))oUE C V.

First we show that neithes nor |/ act onK;, i.e., thatkjo = K; andK; = K; hold: the
literal K; is a literal fromD, which is obtained from the (ground) clauBeby replacing
each constant i not in ® by a fresh variable. Thud; is parameter-free and all its
variables are disjoint from the variableslimndLo. Thus, the context unifies (of the
clausel v C) need not act on the claufev M, and hence in particular not ¢, which
implies Kio = K;. Similarly, recall that(is a matcher of.o to M. Clearly we may
assumel to move the variables and parameterd.afonly. With the freshness of the
variables inD \V M, thus,Ki{ = K;.

Next we show, similarly, that neither nor | acts onk?, i.e., thatkdc = K2 and
K8 = K2 hold. For this, we need the fact that context literals usecbimtext unifiers

are fresh. Thus, neither nor i acts onK?, which is a context literal of the context
unifier , and the stated equalities follow.

From K3 = K8 and K2/ = K2 and together witkjo = K;, Kill = K; the above
eqguation (1-a) is equivalent ¥6 = Ki56, which holds trivially by notation.

With K0 = K? andK2 = K?, condition (2-a) is equivalent taPar(K?2))d C V.
Recall thatD v M is conflicting with/A because 0d. By definition,d thus does not have
a remainder, an@Par(K?))d C V follows in particular.

It remains to prove conditions (1-b) and (2-b).

Regarding (1-b), it is safe to assume thas idempotent. Recall that is a matcher
form Lo to M, and all variables o# are fresh, as argued further above. It is not difficult
to see thabp must be idempotent, too. Thus (1-b) is equivalent fo/d = L_j’ou’é.
This, however, follows trivially from_ ;o = L_?o, which holds by notation.

Regarding (2-b), notice firgtPar(L{))o C V. This holds becaudeo is a propagated
literal and, by definition oPropagate, none of the literals iilCo is a remainder literal.
In particular, thus(Par(L?))o C V. Next we will extend this inequality and obtain
(Par(L]))ol'd C V, which will complete the proof.

Recall from the regression step we are considering Vhat paired withLo. Re-
call further thatD v M is conflicting with/A because obd. The literal paired wittM in
the context unified is thus a fresh p-variant dfo, say,Lop for some appropriate p-
renamingp. That is,Md = Lopd. We also know thakc can be instantiated tel by (.

31

Thatis,Lol = M. Applying dyieldsLo/'d = M= Lapd. Now, asD VM is conflicting
because 0b, & has no remainder literals. In particular, thg®ar(Lop))d C V. From
this it is not too difficult to see thgtd maps all parameters &fo to parameters. With
Loy'd = Md = Lopd it follows that/d maps all parameters &b to parameters. Recall
thatl can be restricted to move parameters and variables ainly. All other parame-
ters that/d moves are moved by to parameters (becauséhas no remainder literals).
;ogether thus we obtain frorf®ar(Lf))o C V the desired resultPar(L?))opd C V.

	Introduction
	Related Work

	An Abstract Proof Procedure ME
	Formal Preliminaries
	A Basic Proof Procedure for ME
	Adding Learning to ME Proof Procedures
	The Grounded Method
	The Lifted Method
	The Propositional Method

	Implementation
	Lemma Generation
	Regression Depth
	Simplification
	Application
	Forget

	Experimental Evaluation
	First problem set
	Second problem set

	Conclusion and Further Work
	Proofs

