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Abstract

The Model Evolution (ME) Calculus is a proper lifting to first-order logic of
the DPLL procedure, a backtracking search procedure for propositional satisfiabil-
ity. Like DPLL, the ME calculus is based on the idea of incrementally building a
model of the input formula by alternating constraint propagation steps with non-
deterministic decision steps. One of the major conceptual improvements over basic
DPLL is lemma learning, a mechanism for generating new formulae that prevent
later in the search combinations of decision steps guaranteed to lead to failure. We
introduce three lemma generation methods forME proof procedures, with various
degrees of power, effectiveness in reducing search, and computational overhead.
Even if formally correct, each of these methods presents complications that do not
exist at the propositional level but need to be addressed forlearning to be effective
in practice forME. We discuss some of these issues and present initial experimen-
tal results on the performance of an implementation within Darwin of the three
learning procedures.

1 Introduction

The Model Evolution (ME) Calculus [BT03a] is a proper lifting to first-order logic of
the DPLL procedure, a backtracking search procedure for propositional satisfiability.
Similarly to DPLL, the calculus is based on the idea of incrementally building a model
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of the input formula by alternating constraint propagationsteps with non-deterministic
decision steps. Two of the major conceptual improvements over basic DPLL developed
over the years arebackjumping, a form of intelligent backtracking of wrong decision
steps, andlemma learning, a mechanism for generating new formulae that prevent later
in the search combinations of decision steps guaranteed to lead to failure.

Adapting backjumping techniques from the DPLL world toME implementations is
relatively straightforward and does lead to performance improvements, as our past expe-
rience withDarwin, our ME-based theorem prover, has shown [BFT06b]. In contrast,
adding learning capabilities is not immediate, first because one needs to lift properly to
the first-order level both the notion of lemma and the lemma generation process itself,
and second because any first-order lemma generation processadds a significant compu-
tation overhead that can offset the potential advantages oflearning.

In this paper, we introduce and prove correct three lemma generation procedures
for ME with various degrees of power, effectiveness in reducing search, and computa-
tional overhead. Even if formally correct, each of these procedures presents issues and
complications that do not arise at the propositional level and need to be addressed for
learning to be effective forME. We discuss some of these issues and then present ini-
tial experimental results on the performance of an implementation withinDarwin of the
learning procedures.

The ME calculus is a sequent-style calculus consisting of three basic derivation
rules: Split, Assert andClose, and three more optional rules. To simplify the exposi-
tion we will consider here a restriction of the calculus to the non-optional rules only. All
the learning methods presented in this paper can be extendedwith minor modifications
to ME derivations that use the optional rules as well. The derivation rules are presented
in [BT03a] and in more detail in [BT03b]. We do not present them directly here because
in this paper we focus onproof proceduresfor ME, which are better described in terms
of abstract transition systems (see Section 2). It suffices to say thatSplit, with two pos-
sible conclusions instead of one, is the only non-deterministic rule of the calculus and
that the calculus is proof-confluent, i.e., the rules may be applied in any order, subject to
fairness conditions, without endangering completeness. Derivations inME are defined
as sequences ofderivation trees, trees whose nodes are pairs of the formΛ ` Φ where
Λ is a literal set andΦ a clause set. A derivation for a clause setΦ0 starts with a single-
node derivation tree containingΦ0 and grows the tree by applying one of the rules to
one of the leaves, adding to that leaf the rule’s conclusionsas children.

A proof procedure forME in effect grows the initial derivation tree in a depth-first
manner, backtracking onclosed branches, i.e., failed branches whose leaf results from
an application ofClose.1 The procedure determines that the initial clause setΦ0 is
unsatisfiable after it has determined that all possible branches are closed. Conversely, it

1 More precisely, the proof procedure performs a sort of iterative-deepening search, to avoid getting
stuck in infinite branches.
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finds a model ofΦ0 if it reaches a node that does not contain the empty clause andto
which no derivation rule applies.

In terms of constraint solving and search, theSplit rule is the only rule that creates
choice points in the search space. TheAssert and theClose rules are just constraint
propagation operations that limit the amount of explored search space. Like in all back-
tracking procedures, performance of a proof procedure forME can be improved in prin-
ciple by analyzing the sequence of non-deterministic choices (i.e,Split decisions) that
have led to aconflict, i.e., a closed branch. The analysis determines which of thechoices
were really relevant to the conflict and saves this information, so that the same choices,
or similar choices that can also lead to a conflict, are avoided later in the search. In the
next section, we present three methods for implementing this sort oflearning process.
The first two methods follow the footprints of popular learning methods from the DPLL
literature: conflict analysis is performed by means of a guided resolution derivation that
synthesizes a new clause, alemma, containing the reasons for the conflict; then learning
is achieved simply by adding the lemma to the clause set and using it like any other
clause in constraint propagation steps during the rest of the derivation. These methods
can be given a logical justification by seeing them just as another derivation rule that
adds to the clause set selected logical consequences of the set. In contrast, the third
method we describe, although similar in spirit to the first two, has only an operational
justification.

1.1 Related Work

The paper [GP00] is about satisfiability checking of function-free first-order formulas.
Instead of the widely used reduction to propositional satisfiability and using a SAT solver
then, the authors propose to keep some of the original formulas (clauses) and extend a
SAT solver to reason with them natively, on the first-order level, instead of grounding
them right away. Their main result is that this idea may well pay off when problem
instances become larger.

There is potential to connect their approach to ours by observing that these first-order
formulas obviously need not come from the input formula—they could be lemma clauses
learnt by the techniques we propose. From the perspective ofthe Model Evolution
calculus, the mentioned result allows to speculate that even for ground derivations, the
learning of non-ground lemma clauses, which is supported byour techniques, may pay
off when properly implemented.

Regarding directly related work, to our knowledge there is little work in the liter-
ature on conflict-driven lemma learning in first-order theorem proving. The only ap-
proaches we are aware of have been formulated for the model elimination calculus.
One of them is described in [AS92] and consists of the “caching” and “lemmaizing”
techniques. Caching means to store solutions to subgoals (which are single literals)
in the proof search. The idea is to look up a solution (a substitution) that solves the
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current sugoal, based on the solution of a previously computed solution of a compat-
ible subgoal. This idea of replacing search by lookup is thusconceptually related to
lemma learning as we consider it here. However, caching corresponds to learning of
unit clauses, and it works only for Horn clause sets.2 Closer to our approach is the
lemmaizing technique, which allows to generate and use new clauses as the derivation
proceeds. Lemma clauses are generated on branch closure andby taking the so-called
A-literals of a branch into consideration. The basic motivation for doing so is, like in
our approach, to represent a sub-proof by a single clause. Unsurprisingly, the lemmas
are consequences of the input clauses, potentially there are a lot of them, and their use
may and should be subject to (arbitrary) heuristics. As far as we can tell from [AS92]
(and other publications), the use of lemmas there seems having been restricted tounit
lemmas, perhaps for pragmatic reasons, although the mechanism has been defined more
generally (already in [Lov78]). The other related approachis described in [LS01]. Their
approach generalizes the caching technique of [AS92]. By caching the solutions in a
more context-dependent (“local”) way, it works for non-Horn clauses, too. In particular
the variant offailure caching, which can be used to conclude that a subgoal does not
have a solution, turned out to be very useful in practice.

Another source for related work comes from Explanation-Based Learning (EBL), a
set of deductive learning techniques used in Artificial Intelligence. Generally speaking,
EBL allows the learning of logical descriptions of a conceptfrom the description of a sin-
gle concept instance and a preexisting knowledge base. A comprehensive and powerful
EBL framework is presented in [SE94]. In theorem proving terms, its basis consists es-
sentially of the language of definite logic programs and the calculus of SLD-resolution.
EBL is essentially the process of deriving from a given SLD proof a (definite) clause
representing parts of the proof or even generalizations thereof. The rationale is to derive
clauses that are of highutility, that is, help to find shorter proofs of similar theorems
without broadening the search space too much. Deriving suchclauses can be explained
using resolution terminology ([SE94] use their own language). It basically amounts to
partially replaying parts of the given SLD proof and further modifing the obtained clause
in a sound way. For instance, one of the heuristics prescribes to exhaustively apply reso-
lution steps with binary clauses (implications with one body literal). Another heuristics
amounts to factoring, while still another one is based on removing redundant subgoals.
Apart from the specific heuristics, the learning procedureswe present here follow a sim-
ilar process. Structurally, they are SLD-derivations producing lemma clauses, and have
a role comparable to the derivations of [SE94].

2The underlying reason is that for non-Horn input clause setsin general the so-called reduction inference
rule is needed, which may introduce dependencies between sugoals that would have to be taken care of in
the lemma generation process.
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2 An Abstract Proof ProcedureME

Being acalculus, ME abstracts away many control aspects of a proof search. As a con-
sequence, one cannot formalize in it stateful operational improvements such as learn-
ing, which is based on generating new clauses and adding themto the current clause
set for use in later branches of the search tree. Following anapproach first introduced
in [NOT05] for the DPLL procedure, one can however formalizegeneral classes of proof
procedures forME in a way that makes it easy to model and analyze operational features
like backtracking and learning.

An ME proof procedure can be described abstractly as a transitionsystem overstates
of the form⊥, a distinguished fail state, or the formΛ ` Φ whereΦ is a clause set
andΛ is an(ordered) context, that is, a sequence ofannotated literals, literals with an
annotation that marks each of them as adecisionor a propagatedliteral. We model
genericME proof procedures by means of a set of states of the kind above together
with a binary relation=⇒ over these states, thetransition relation, defined by means
of conditional transition rules. For a given stateS, a transition rule precisely defines
whether there is a transition fromS by this rule and, if so, to which stateS′. A proof
procedure is then atransition system, a set of transition rules defined over some given
set of states. In the following, we first introduce a basic transition system forME and
then extend it with learning capabilities.

2.1 Formal Preliminaries

If =⇒ is a transition relation between states we write, as usual,S=⇒ S′ instead of
(S,S′) ∈ =⇒. We denote by=⇒∗ the reflexive-transitive closure of=⇒. Given a tran-
sition systemR, we denote by=⇒R the transition relation defined byR. We call any
sequence of transitions of the formS0 =⇒R S1, S1 =⇒R S2, . . . aderivation in R, and
denote it byS0 =⇒R S1 =⇒R S2 =⇒ . . . When convenient, we will see an ordered con-
text simply as a set of literals—ignoring both the annotations and multiple occurences
of its elements. The concatenation of two ordered contexts will be denoted by simple
juxtaposition. When we want to stress that a context literalL is annotated as a deci-
sion literal we will write it asLd. With an ordered context of the formΛ0 L1Λ1 · · ·Ln Λn

whereL1, . . .Ln are all the decision literals of the context, we say that the literals inΛ0

are atdecision level0, and those inLi Λi are at decision leveli, for all i = 1, . . . ,n.
The formal framework described so far would be sufficiently specified to define

proof procedures for propositional logic. However, for thefirst-order proof procedures
we need additional technical preliminaries. They involve working with non-ground con-
texts and non-ground input clause sets.

The ME calculus uses two disjoint, infinite sets of variables: a setX of universal
variables, which we will refer to just as variables, and another setV, which we will
always refer to asparameters. We will useu andv to denote elements ofV andx and
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y to denote elements ofX. If t is a term we denote byV ar(t) the set oft’s variables
and byPar(t) the set oft’s parameters. A termt is ground iff V ar(t) = Par(t) = /0.
A substitutionρ is a renaming on W⊆ (V ∪ X) iff its restriction toW is a bijection of
W onto itself. A substitutionσ is p-preserving(short for parameter preserving) if it is
a renaming onV. If s andt are two terms, we say thats is a p-variant of t, and write
s' t, iff there is a p-preserving renamingρ such thatsρ = t. We writes≥ t and say that
t is a p-instance of siff there is a p-preserving substitutionσ such thatsσ = t. We write
tsko to denote the term obtained fromt by replacing each variable int by a fresh Skolem
constant. All of the above is extended from terms to literalsin the obvious way.

Every (ordered) context the proof procedure works with willstart with apseudo-
literal of the form¬v, the role of which will become clear later. In examples will usually
not write¬v explicitly. WhereL is a literal andΛ a context, we will writeL ∈' Λ if L is
a p-variant of a literal inΛ. A literal L is contradictory witha contextΛ iff Lσ = Kσ for
someK ∈' Λ and some p-preserving substitutionσ. A contextΛ is contradictory if one
of its literals is contradictory withΛ. Each non-contradictory context starting with the
pseudo-literal¬v defines a Herbrand interpretationIΛ.3 In a state of the formΛ ` Φ,
the interpretationIΛ is meant to be acandidatemodel forΦ. The purpose of the proof
procedure is to recognize whether the candidate model is in fact a model ofΦ or whether
it possibly falsifies a clause ofΦ. The latter situation is detectable syntactically through
the computation ofcontext unifiers.

Definition 2.1 (Context Unifier) Let Λ be a context and

C = L1∨ ·· ·∨Lm∨Lm+1∨ ·· ·∨Ln

a parameter-free clause, where 0≤ m≤ n. A substitutionσ is a context unifier of C
againstΛ with remainder Lm+1σ∨·· ·∨Lnσ iff there are fresh p-variantsK1, . . . ,Kn ∈' Λ
such that

1. σ is a most general simultaneous unifier of{K1,L1}, . . . ,{Kn,Ln},

2. for all i = 1, . . . ,m, (Par(Ki))σ ⊆V,

3. for all i = m+1, . . . ,n, (Par(Ki))σ 6⊆V.

A context unifierσ of C againstΛ with remainderLm+1σ∨ ·· ·∨Lnσ is admissible (for
Split) iff for all distinct i, j = m+1, . . . ,n, V ar(Liσ) ∩ V ar(L jσ) = /0.

Note that each context unifier has a unique remainder. Ifσ is a context unifier with
remainderD of a clauseC against a contextΛ, we call each literal ofD a remainder
literal of σ. We say thatC is conflicting (inΛ because ofσ) if σ has an empty remainder.

3 The difference between (universal) variables and parameters inME lies mainly in the definition of this
Herbrand interpretation. Roughly, a literal with a parameter, likeA(u), in a context assigns true to all of its
ground instances that are not also an instance of a more specific literal, like¬A( f (u)), with opposite sign.
In contrast, a literal with a variable, likeA(x), assigns true to all of its ground instances, with no exceptions.
See [BT03a, BT03b] for details.
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2.2 A Basic Proof Procedure forME

A basic proof procedure forME is the transition system B defined by the rulesDecide,
Propagate, Backjump andFail below. The relevant derivations in this system are those
that start with a state of the form{¬v} ` Φ, whereΦ is the clause set whose unsatisfia-
bility one is interested in.

Decide: Λ ` Φ, C∨L =⇒ Λ (Lσ)d ` Φ, C∨L if (∗)

where(∗) =



















σ is an admissible context unifier ofC∨L againstΛ (cf. Def. 2.1)

with at least two remainder literals,

Lσ is a remainder literal, and

neitherLσ nor (Lσ)
sko is contradictory withΛ

We call the literalLσ above adecision literalof the context unifierσ and the clause
C∨ L. This rule corresponds to an application of the left-hand side of theSplit rule
in ME (with the additional restriction that the context unifier must have at least two
remainder literals).Decide makes the non-deterministic decision of adding the literal
Lσ to the context. It is the only rule that adds a literal as a decision literal.

Propagate: Λ ` Φ, C∨L =⇒ Λ, Lσ ` Φ, C∨L if (∗)

where(∗) =



















σ is an admissible context unifier ofC∨L againstΛ
with a single remainder literalLσ,

Lσ is not contradictory withΛ, and

there is noK ∈ Λ s. t.K ≥ Lσ

We call the literalLσ in the rule above thepropagated literalof the context unifierσ and
the clauseC∨L. This rule corresponds to applying the left-hand side ofSplit in ME with
a context unifier with a unit remainder, and ignoring the right-hand side.4 Propagate
also models the effect of applying theAssert rule of ME whenL is a positive literal.
For simplicity, we ignore here the case in whichL is negative. That case somewhat
complicates thePropagate’s definition and is needed neither for the proof procedure’s
completeness nor for describing the results of this work.

Backjump: Λ LdΛ′ ` Φ, C =⇒ Λ L
sko

` Φ, C if

{

C is conflicting in

Λ LdΛ′ but not inΛ

This rule corresponds to the application of theClose rule in ME, followed by a right-
hand sideSplit application higher up in the closed branch.Backjump models both
chronological and non-chronological backtracking by allowing, but not requiring, that
the undone decision literalL be the most recent one. Note thatL’s complement is added

4 Ignoring the right-hand side in this case is justified inME derivations because it produces a sequent
to which theClose rule is immediately applicable.
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as a propagated literal, after all (and only) the variables of L have been Skolemized,
which is needed for soundness. More general versions ofBackjump are conceivable, for
instance along the lines of the backjump rule of Abstract DPLL [NOT05]. Again, we
present this one here mostly for simplicity.

Fail: Λ ` Φ, C =⇒ ⊥ if

{

C is conflicting inΛ,

Λ contains no decision literals

This rule corresponds to the application of theClose rule in ME to the last unexplored
branch of the derivation tree, with all other branches beingalready closed.

Restart: Λ ` Φ =⇒ {¬v} ` Φ

Restart is used to generate fair derivations that explore the searchspace in an iterative-
deepening fashion.

Although it is beyond the scope of this paper, one can show that there are (determin-
istic) rule application strategies for this transition system that are refutationally sound
and complete, that is, that reduce a state of the form{¬v} ` Φ to the state⊥ if and only
if Φ is unsatisfiable. Furthermore, for all (finite) derivationsending with an irreducible
state of formΛ ` Φ, Λ determines a Herbrand model ofΦ.

2.3 Adding Learning to ME Proof Procedures

To illustrate the potential usefulness of learning techniques for a transition system like
the system B defined in the previous subsection, it is useful to look first at an example
of a derivation in B.

Example 2.2 Let Φ be a clause set containing, among others, the clauses:

(1) ¬B(x)∨C(x,y) (2) ¬A(x)∨¬C(y,x)∨D(y) (3) ¬C(x,y)∨E(x) (4) ¬D(x)∨¬E(x).

Table 1 provides a trace of a possible derivation ofΦ. The first column shows the literal
added to the context by the current derivation step, the second column specifies the
rule used in that step, and the third indicates which instance of a clause inΦ was used
by the rule.5 A row with ellipses stands for zero or more intermediate steps. Note that
Backjump replacesthe whole subsequenceB(u)dC(u,y)D(u)E(u) of the current context
with ¬B(u).
It is clear by inspection of the trace that any intermediate decisions made between the
additions ofA(t(x)) andB(u) are irrelevant in making clause (4) conflicting at the point
of the Backjump application. The fact that (4) is conflicting depends only onthe deci-
sions that lead to the propagation ofA(t(x))—say, some decision literalsS1, . . . ,Sn with

5 From the instance alone it should be easy to see which contextunifier was used in the last four rule
applications.
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Context Literal Derivation Rule Clause Instance
. . . . . . . . .

A(t(x)) Propagate instanceA(t(x))∨·· · of some clause inΦ
wheret(x) is a term in the variablex.

. . . . . . . . .
B(u)d Decide instanceB(u)∨·· · of some clause inΦ
C(u,y) Propagate instance¬B(u)∨C(u,y) of (1)
D(u) Propagate instance¬A(t(x))∨¬C(u,t(x))∨D(u) of (2)
E(u) Propagate instance¬C(u,y)∨E(u) of (3)
¬B(u) Backjump instance¬D(u)∨¬E(u) of (4)

Table 1: A trace of a derivation in the system B.

n≥ 0—and the decision to addB(u). This means that the decision literalsS1, . . . ,Sn,B(u)
will eventually produce a conflict (i.e., make some clause conflicting) in any context that
contains them. The basic goal of this work is to define efficient conflict analysis proce-
dures that can come to this conclusion automatically and store it into the system in such
a way thatBackjump is applicable, possibly with few propagation steps, whenever the
current context happens to contain again the literalsS1, . . . ,Sn,B(u). Even better would
be the possibility to avoid altogether the addition ofB(u) as a decision literal in any
context containingS1, . . . ,Sn, and instead add the literal¬B(u) as a propagated literal.
We discuss how to do these in the rest of the paper.

Within the abstract framework of Section 2.2, and in perfectanalogy to the Abstract
DPPL framework of Nieuwenhuiset al. [NOT05], learning can be modeled very simply
and generally by the addition of the following two rules to the transition system B:

Learn: Λ ` Φ =⇒ Λ ` Φ, C if Φ |= C

Forget: Λ ` Φ, C =⇒ Λ ` Φ if Φ |= C

In this very general formulation, learning is simply the addition, via an application
of Learn, of an entailed clause to the clause set. While in principle one could learn any
entailed clause,Learn is meant to be used to add only clauses that are more likely to
cause further propagations and correspondingly reduce thenumber of needed decisions.
The intended use ofForget rule is to control the growth of the clause set, by removing
entailed clauses that cause little propagation.

Because of the potentially high overhead involved in generating lemmas and propa-
gating them in practice, we focus in this work on only the kindof conflict-drivenlearning
that has proven to be very effective in DPLL-based solvers. In the following we discuss
two methods for doing that. Both of them are directly based ona lemma generation
technique common in DPLL implementations. This technique can be described proof-
theoretically as a linear resolution derivation whose initial central clause is a conflicting



2.4 The Grounded Method 10

clause in the DPLL computation, and whose side clauses are clauses used in unit prop-
agation steps. In terms of the abstract framework above, thelinear resolution derivation
proceeds as follows. The central clauseC∨ L is resolved with a clauseL∨D in the
clause set only ifL was added to the current context by aPropagate step with clause
L∨D. Since the net effect of each resolution step is to replaceL in C∨L by L’s “causes”
D, we can also see this resolution derivation as aregressionprocess.

Both of the first two methods we present below lift this regression to the first-order
case, although with different degrees of generality. The first method is strictly subsumed
by the second. We present it here because it is practically interesting in its own right,
and because it can be used to greatly simplify the presentation of the second method.
The third and last method is less general. In our experimentswe used it mostly as a
sanity check against the other two methods because of its much lower overhead.

2.4 The Grounded Method

Let D = ({¬v} ` Φ0 =⇒L . . . =⇒L Λ ` Φ) be a derivation in the transition system L
whereΛ contains at least one decision literal andΦ contains a clauseC0 conflicting in
Λ. We describe a process for generating fromD a lemma, a clause logically entailed by
Φ, which can belearnedin the derivation by an application ofLearn to the stateΛ ` Φ.

We describe the lemma generation process itself as a transition system, this time
applied toannotated clauses, pairs of the formC | SwhereC is a clause andS is finite
mapping{L 7→ M, . . .} from literals inC to context literals ofD. A transition invariant
for C | Swill be thatC consists of negated ground instances of context literals, while S
specifies for each literalL of C the context literalM of which L is an instance, provided
thatM is a propagated literal. The mappingL 7→ M will be used toregress L, that is to
resolve it withM in the clause used inD to addM to the context.

The initial annotated clauseA0 will be built from the conflicting clause ofD, and
will be regressedby applying to it theGRegress rule, defined below, one or more times.
In the definition ofA0 and ofGRegress we use the following notational conventions.
If σ is a substitution andC a clause or a literal,Cσ denotes the expression obtained by
replacing each variable or parameter ofCσ by a fresh Skolem constant (one per variable
or parameter). Ifσ is a context unifier of a clauseL1∨·· ·∨Ln against some context, we
denote byLσ

i the context literal paired withLi by σ.
Assume thatC0 is conflicting inΛ because of some context unifierσ0. ThenA0 is

defined as the annotated lemma

A0 = C0σ0 | {Lσ0 7→ Lσ0 | L ∈C0 andLσ0 is a propagated literal}

consisting of a fresh grounding ofC0σ0 by Skolem constants and a mapping of each lit-
eral ofC0σ0 to its pairable literal inΛ if that literal is a propagated literal. The regression
rule is

GRegress: D∨M | S, M 7→ Lσ =⇒gr D∨Cσµ | S,T if (∗)
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where(∗) =











Lσ is the propagated literal of some context unifierσ and clauseL∨C,

µ is a most general unifier ofM andLσ,

T = {Nσµ 7→ Nσ | N ∈C andNσ is a propagated literal}

Note that the mapping is used byGRegress to guide the regression so that no search
is needed. The regression process simply repeatedly applies the ruleGRegress an ar-
bitrary number of times starting fromA0 and returns the last clause. While this clause
is ground by construction, it can be generalized to a non-ground clauseC by replacing
each of its Skolem constants by a distinct variable. As proved in the next two results, this
generalized clause is a logical consequence of the current clause setΦ in the derivation,
and so can be learned with an application of theLearn rule.

To start, every regression of the initial annotated lemma with GRegress generates a
logical consequence of the clause set.

Lemma 2.3 If A0 =⇒∗
gr C | S, then the following holds.

1. For everyM 7→ N ∈ S, M is a (ground) instance ofN.

2. The (ground) clauseC is a consequence ofΦ.

Proof. Suppose a regression derivationA0 =⇒∗
gr C | S of length l ≥ 0 as given. We

directly prove the claim by induction onl .

l = 0) 1. By construction ofA0, M = Lσ0 for some literalL andN is the propagated
literal Lσ0. By definition of context unifier we have thatLσ0 = Nσ0. SoM is a ground
instance ofN.

2. Immediately by construction, asC0σ0 is a ground instance of the closing clause.

l > 0) 1. For the mappings ofS added by the application of the rule, the proof is
analogous to the base case. For the others, the claims holds by induction.

2. Using the notation as introduced in theGRegress rule above, we prove first that
GRegress preserves consequenceship.

With M being a (ground) instance ofLσ, as obtained by the induction hypothesis and
1, the most general unifierµ is in fact a matcher such thatLσµ = M. Thus, the clause
D∨Cσµ is a (ground) instance of the resolution resolventD∨Cσ of the parent clause
D∨M, which is ground, and the parent clauseLσ∨Cσ, where the mgu used isµ.

Now, the (ground) clauseD∨M is a consequence ofΦ by induction assumption and
Lσ∨Cσ is an instance of a clause inΦ by construction. With the soundness of resolution
it follows thatD∨Cσµ is a consequence ofΦ.

Proposition 2.4 If A0 =⇒∗
gr C | S,6 the clauseC obtained fromC by replacing each

constant ofC not in Φ by a fresh variable is a consequence ofΦ0.

6Here and below, we writeC as a suggestive notation to denote a ground clause standing in a certain
relation with another clauseC.
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¬D(a)∨¬E(a) ¬C(u,y)∨E(u)

¬D(a)∨¬C(a,b) ¬A(t(x))∨¬C(u,t(x))∨D(u)

¬C(a,b)∨¬A(t(c))∨¬C(a,t(c)) ¬B(u)∨C(u,y)

¬A(t(c))∨¬C(a, t(c))∨¬B(a) ¬B(u)∨C(u,y)

¬A(t(c))∨¬B(a)

Figure 1: Grounded regression of¬D(u)∨¬E(u).

Proof. By Lemma 2.3 and the Free Constants Theorem of first order logic.

From a practical viewpoint, an important invariant is that one can continue regressing
the initial clause until it contains only decision literals. This result, expressed in the next
proposition, gives one great latitude in terms of how far to push the regression. In our
implementation, to reduce the regression overhead, and following a common practice in
DPLL solvers, we regress only propagated literals belonging to the last decision level of
Λ.

Proposition 2.5 If A0 =⇒∗
gr A andA has the formD∨M | S,M 7→N, then theGRegress

rule applies toA.

Proof. It is enough to show thatM is anAssert literal in D andM is an instance ofN.
The latter holds by Lemma 2.3, the former is easily provable again by induction on the
length of regression derivations.

Example 2.6 Figure 1 shows a possible regression of the conflicting clause ¬D(x)∨
¬E(x) in the derivation of Example 2.2. This clause is conflicting because of the context
unifier σ0 = {x 7→ u}, pairing the clause literals¬D(x) and¬E(x) respectively with the
context literalsD(u) andE(u). So we start with the initial annotated clause:

A0 = (¬D(x)∨¬E(x))σ0 | {(¬D(x))σ0 7→ (¬D(x))σ0, (¬E(x))σ0 7→ (¬E(x))σ0}

= ¬D(a)∨¬E(a) | {¬D(a) 7→ D(u), ¬E(a) 7→ E(u)} .

To ease the notation burden, we represent the regression in the more readable form of
a linear resolution tree, where at each step the central clause is the regressed clause,
the literal in bold font is the regressed literal, and the side clause is the clause(L∨C)σ
identified in the precondition ofGRegress. The introduced fresh Skolem constants are
a,b andc. Stopping the regression with the last resolvent in the derivation gives, after
abstracting away the Skolem constants, the lemma¬A(t(z))∨¬B(x).7

7 The fact that the literals in this lemma are variable disjoint is not typical of the regression process. It
is just a (nice) feature of this particular example.
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To judge the effectiveness of lemmas learned with this process in reducing the ex-
plored search space we also need to argue that they let the system later recognize more
quickly, or possibly avoid altogether, the set of decisionsresponsible for the conflict in
D. This is not obvious within theME calculus because of the role played by parameters
in the definition of a conflicting clause. (Recall that a clause is conflicting because of
some context unifierσ iff it moves parameters only to parameters in the context literals
associated with the clause.) To show that lemmas can have theintended consequences,
we start by observing that, by construction, every literalLi in a lemmaC = L1∨·· ·∨Lm

generated with the process above is a negated instance of some context literalKi in Λ.
Let us writeCΛ to denote the set{K1, . . . ,Km}.

Lemma 2.7 If A0 =⇒∗
gr E | S and the clauseE is obtained fromE by replacing each

constant ofE not in Φ by a fresh variable, thenE is conflicting in any context that
containsEΛ.

Proof. See the appendix.

Proposition 2.8 Any lemmaC produced fromD by the regression method in this sec-
tion is conflicting in any context that containsCΛ.

Proof. Follows immediately from Lemma 2.7

Proposition 2.8 implies, as we wanted, that having had the lemmaC in the clause
set from the beginning could have led to the discovery of a conflict sooner, that is, with
less propagation work and possibly also less decisions thanin D. Moreover, the more
regressed the lemma, the sooner the conflict would have been discovered.

Example 2.9 Looking back at the lemmas generated in Example 2.6, it is easy to see
that the lemma¬C(x,y)∨¬A(t(z))∨¬C(x, t(z)) becomes conflicting in the derivation of
Table 1 as soon asC(u,y) is added to the context. In contrast, the more regressed lemma
¬A(t(z))∨¬B(x) becomes conflicting as soon as the decisionB(u) is made.

Since a lemma generated fromD is typically conflicting once asubsetof the deci-
sions inΛ are taken, learning it in the stateΛ ` Φ, C0 will help recognize more quickly
these wrong decisions later in extensions ofD that undo parts ofΛ by backjumping. In
fact, if the lemma is regressed enough, one can do even betterand completely avoid the
conflict later on if one uses a derivation strategy that prefers applications ofPropagate
to applications ofDecide.

Example 2.10 Consider an extension of the derivation in Table 1, where thecontext
has been undone enough that now its last literal isA(t(x)). By applyingPropagate to
the lemma¬A(t(z))∨¬B(x) it is possible to add¬B(x) to the context, thus preventing
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the addition ofB(u) as a decision literal (becauseB(u) is contradictory with¬B(x))
and avoiding the conflict with clause (4). With the less regressed lemma¬A(t(z))∨
¬C(x, t(z)) it is still possible to add¬B(x), but with two applications ofPropagate—to
the lemma and then to clause (1).

So far, what we have described mirrors what happens with propositional clause sets
in DPLL SAT solvers. What is remarkable about learning at theME level, in addition to
that it does have the same nice effects obtained in DPLL, is that its lemmas are not just
caching compactly the reasons for a specific conflict. For being afirst-order formula,
a lemma inME represents aninfinite class of conflicts of the same form. For instance,
the lemma¬A(t(z))∨¬B(x) in our running example will become conflicting once the
context containsany instance ofA(t(z)) andB(x), not just the originalA(t(x)) andB(u).

Our lemma generation process then does learning in a more proper sense of the
word, as it can generalize over a single instance of a conflict, and later recognizeunseen
instances in the same class, and so lead to additional pruning of the search space.

A slightly more careful look at the derivation in Table 1 shows that the lemma
¬A(t(z))∨¬B(x) is actually not as general as it could be. The reason is that a con-
flict arises also in contexts that contain, in addition to anyinstance ofB(x), also any
generalizationof A(t(z)). So a better possible lemma is¬A(z)∨¬B(x). We can pro-
duce generalized lemmas like the above by lifting the regression process similarly as in
Explanation-Based Learning (cf. Section 1). We describe this lifted process next.

2.5 The Lifted Method

Consider again the derivationD from the previous subsection, whose last stateΛ ` Φ
contains a clauseC0 that is conflicting inΛ because of some context unifierσ0. Starting
with the annotated lemma

C′
0 | S′0 = C0σ0 | {Lσ0 7→ Lσ0 | L ∈C0 andLσ0 is a propagated literal},

one can build a regression of the form

C′
0 | S′0 =⇒gr C′

1 | T ′
1 =⇒gr . . . =⇒gr C′

n | T ′
n .

We have seen that this regression determines a linear resolution derivation,whose deriva-
tion tree is depicted in Figure 2(a), whereC′

0 andD′
i are instances of clauses inΦ, and

C′
i+1 is a resolvent ofC′

i andD′
i for all i = 0, . . . ,n−1. Using basic results about resolu-

tion and unification, this derivation can be lifted to one of the form shown in Figure 2(b)
whereC0 and eachDi are the clauses inΦ thatC′

0 andD′
i are instances of, and eachCi+1

is a resolvent ofC′
i andD′

i and a generalization ofC′
i+1.

Conceptually, the lifted derivation can be built simply by following the steps of the
grounded derivation, but this time using the original clauses inΦ for the initial central
clause and the side clauses. In practice of course, the lifted derivation can be built
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(a) (b)
Figure 2: Grounded regression derivation and its lifting.

directly, without building the grounded derivation first. We do this by starting with the
annotated lemmaC0 | S0 = C0 | {L 7→ Lσ0 | L ∈C0 andLσ0 is a propagated literal}, and
regressing that lemma with the following lifted version ofGRegress:

Regress: D∨M | S, M 7→ Lσ =⇒r (D∨Cv)µ | S,T if (∗)

where(∗) =



















Lσ is the propagated literal of some context unifierσ and clauseL∨C,

Lv ∨Cv is a fresh variant ofL∨C,

µ is a most general unifier ofM andLv, and

T = {Nvµ 7→ Nσ | N ∈C, andNσ is a propagated literal}

Proposition 2.11 For every grounded regression

C′
0 | S′0 =⇒gr C′

1 | T ′
1 =⇒gr . . . =⇒gr C′

n | T ′
n ,

there is a lifted regression

C0 | S0 =⇒r C1 | T1 =⇒r . . . =⇒r Cn | Tn ,

such thatCi & C′
i andΦ |= Ci for all i = 0, . . . ,n.

Proof. The grounded regression can be written as a linear resolution derivation from
ground instances of clauses fromΦ. Using standard lifting arguments (see [CL73]) this
derivation can be lifted to a derivation using the clauses fromΦ instead of their instances,
which, in turn, can be written as the lifted regression as stated. This provesCi & C′

i .
RegardingΦ |=Ci, observe thatC0 ∈ Φ and, according to the just said,Ci is a resolu-

tion resolvent ofCi−1 and some clause fromΦ, for all i = 1, . . . ,n. ThenΦ |= Ci follows
by the soundness of the resolution inference rule.

As in the grounded case then, we can use any regressed clauseC as a lemma. In
contrast, this time there are no constants to abstract, as the regression process resolves
only input clauses ofC. Again, the resulting clause is a logical consequence ofΦ.
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¬D(x)∨¬E(x) ¬C(x1,y1)∨E(x1)

¬D(x)∨¬C(x,y1) ¬A(x2)∨¬C(y2,x2)∨D(y2)

¬C(x,y1)∨¬A(x2)∨¬C(x,x2) ¬B(x3)∨C(x3,y3)

¬A(x2)∨¬C(x,x2)∨¬B(x) ¬B(x4)∨C(x4,y4)

¬A(x2)∨¬B(x)

Figure 3: Lifted regression of¬D(x)∨¬E(x).

Example 2.12 Figure 3 shows the lifting of the grounded regression in Figure 1 for
the conflicting clause¬D(x)∨¬E(x) in the derivation of Example 2.2. This time, we
start with the initial annotated clause:(¬D(x)∨¬E(x)) | {¬D(x) 7→ D(u), ¬E(x) 7→
E(u)} . As before, we represent the regression as a linear resolution tree, where this
time at each step the central clause is the regressed clause,the literal in bold font is the
regressed literal, and the side clause corresponds to the clauseLv∨Cv in the precondition
of Regress. The lemma learned in this case is¬A(z)∨¬B(x).

2.6 The Propositional Method

Recall that each propagated literalL in a context is the result of a unification of a clause
in the clause set with some previous context literalsK1, . . . ,Kn. This sort of dependency
of L on K1, . . . ,Kn defines adependency graphover context literals (whose roots are
the context’s decision literals) that can be used for conflict analysis. In fact, ifC is a
conflicting clause in a contextΛ because of some context unifierσ, starting from the
context literals used byσ and tracing the dependency graph backwards, one can pre-
cisely determine the set{L1, . . . ,Lk} of decision literals that are ultimately responsible
for the conflict. Then one could simply remember this set of decisions and make sure
that they are not repeated again. The way we do this is to abstract eachLi by a unique
(modulo p-renaming) propositional variablePi, add the propositional clauseP1∨·· ·∨Pk

to the clause set, and from then on addPi to the context each timeLi is added. Then the
clause will become conflicting every timeL1, . . . ,Lk occur together again in a context.
By applyingPropagate to these propositional clauses, one can even avoid the conflict
by not addingLi again as a decision literal ifPi is present in the context.

The appeal of this method is that it is relatively cheap to generate and process this
sort of lemmas. The downside is that these lemmas are less general than those computed
with the previous methods, as they just cacheonespecific set of conflicting decisions.

3 Implementation

We implemented the three learning methods described in the previous section, in our
ME theorem proverDarwin.8 We briefly discuss this implementation and comment on
a few details for improving performance.

8 http://goedel.cs.uiowa.edu/Darwin/.

http://goedel.cs.uiowa.edu/Darwin/
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3.1 Lemma Generation

Since we merely take the relevant decision literals for a conflict as the pseudo-lemma
in the propositional abstraction, the lemma generation methods of interest are grounded
and lifted regression. For both cases we employ memoizationto avoid regressing the
same context literal more than once.

In the case of the grounded regression, memoization is done implicitly. Recall that
here each literal to regress corresponds to a (negated) ground instance of a propagated
context literal, which in turn depends itself on previous context literals in the context.
It is easy to see that these dependencies between context literals determine a directed
graph, called aconflict graphin the SAT literature, whose roots are the context literals
associated to the conflict clause and whose leaves are decision literals. In the regression
process, the literals in the current clause are regressed inan order that corresponds to a
breadth-first exploration of the associated conflict graph.Among the literals at the same
depth level in the graph, instances of more recent context literals are regressed first. This
makes sure that all instances of the same context literal areregressed in a row. Now, by
simply keeping the literals to regress in a set, each literalis automatically regressed only
once.

The process is not as simple for the lifted method, as it in general involves unification
operations, as opposed to just matching operations in the grounded case. More precisely,
the regression process is implemented by maintaining threedata structures, a set of
all the literals in the central clause that we want to regress, a set ofregressedliterals
(or regression set), literals that will not be regresses further according to some stop
criterion, and set of unification constraints. If a literal chosen from the first set is not to
be regressed, for example because it is paired with a decision literal, then it is simply
moved to the second set. Otherwise, it is replaced by the literals in the corresponding
side clause, and the unifier of the corresponding resolutionstep is added to the set of
unification constraints. The regression stops when the firstset is empty. At that point,
the unification constraints are solved, and the resulting unifier is applied to the set of
regressed literals, thus producing the lemma clause.

In this process memoization is achieved by doing the regression depth-first, based
on the order of the context literals to regress. For each regressed literal its regressed
literals and contraints are stored. Whenever the same literal is to be regressed again, this
information is reused by creating a copy using fresh variables.9 As an optimization and
similar to the grounded case, a context literal is regressedonly once if it is an instance
of a ground clause literal.

9As described in [BFT06b] this does not require the creation of new terms, but merely replacing integer
offsets.
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3.2 Regression Depth

In analogy to the common procedure in SAT solvers, only literals propagated after the
most recent decision literal responsible for the conflict are regressed. But in contrast
this is not necessarily the most recent decision level. Thisis because, as allowed by the
Backjump rule, Darwin only backtracks up to and including the most recent decision
literal responsible for the conflict. This has the effect that a negated decision literal
does not necessarily depend on the current decision level, and therefore a closure might
not depend on the most recent decision literal. In contrast,the favored backjumping
method in propositional solvers backtracks up to but excluding thesecondmost recent
responsible decision literal. Thus, propositional backjumping backtracks farther and is
in a sense more eager. Experimental results have shown that this more eager form of
backjumping is not beneficial inDarwin, as the right split does in general not prevent
the jumped over decision literals and the subsequent propagations from being reasserted.
Most of the times eager backjumping does not change the search space in a beneficial
way, but instead introduces additional overhead.

An important optimization for propositional solvers is notto stop the regression at
the most recent responsible decision literal, but already at a unique implication point (UIP).
It is unclear how to lift this idea to the first-order level, though, as in general there may be
several, distinct instances of a propagated literal used ina closure. The naive approach
of treating all instances of the same context literal as a potential UIP did not turn out to
be efficient in practice. Furthermore, while the UIP can be found automatically in the
grounded regression, namely when the regression set contains only instances of exactly
one context literal, this is not possible using the depth-first approach of the lifted regres-
sion. Here, either the regression needs to be done breadth-first, but then memoization
cannot be used, or the UIP must be computed before the actual regression is performed.

As a side note we point out that, for the same reason as above, unlike for the proposi-
tional case lemmas can not be used in general to make the explicit addition of the negated
decision literal unnecessary after backjumping. For example, a possible derivation part
based on the clausesP(a,b)∨Q(a,x), ¬P(a,b)∨¬Q(a,c), P(x,b)∨¬Q(x,x), is Decide
of Q(a,x), Propagate of ¬P(a,b), andFail. This yields the grounded and lifted lemma
¬Q(a,d)∨¬Q(a,a). While this lemma does become conflicting ifDecide of Q(a,x)
is applied again, it does not prevent that application ofDecide. To do that, the lemma
would need to be unit. Due to their increased generality, this tends to happen more often
with lifted than with grounded lemmas, makingPropagate sometimes less efficient with
lifted lemmas.

3.3 Simplification

The lemma computed in the grounded and lifted regression is simplified before usage.
Note that a context literal asserted in the root decision level, that is before any decision
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literal is added to the context, is never regressed according to the description above. But,
as it is implied by the clause set, its grounded regression does in essence correspond to
a unit resolution step. As a consequence, root assert context literals do not need to be
and are not added to the lemma. For the lifted regression the case is more complicated,
as it is only directly applicable if the context literal is aninstance of a unit clause. As
in addition the contraint has to be computed as usual, which in some cases leads to a
significant overhead due to too many constraints, root asserts are not handled special
here.

Simplifying the lemma is particularly important in the lifted case because it is not
unusual for the lemma regression process to produce very long lemmas, with several
instances or variants of the same literal. As condensing is too expensive, we employ a
simpler method which produces good results in practice witha linear number of uni-
fication tasks. If all instances of the same context literal in a lemma have a common
instance, they are replaced by their most general common instance, and the correspond-
ing unifier is applied to the remainder of the lemma. Then, if still several variants of a
literal occur, they are condensed into one literal, and the renaming is again applied to
the remainder of the lemma. Finally, duplicates of literalsare removed (as clauses are
treated as sets of literals).

Unfortunately, this method sometimes simplifies the lemma in an unwanted way,
making it in effect useless. For example, if in a context the literals¬A(a),¬B(a),¬B(b),
and¬C(b) lead to a conflict, then the learnt grounded lemma might beA(a)∨B(a)∨
B(b)∨C(b), and the more general lifted lemma might beA(x)∨B(x)∨B(y)∨C(y).
Now, its simplification,A(x)∨B(x)∨C(x), can not be used to prevent the recreation of
the conflicting context, and in fact not even to close on it.

3.4 Application

In principle, during a derivation of the proof procedure lemmas can be used like any
other clause as far as the rulesDecide, Propagate, andFail are concerned. As a lemma’s
purpose is to prune the search space, applyingDecide to lemmas does not seem like
a sensible choice, as confirmed by our experimental results.Using lemmas forFail
applications and for selected applications ofPropagate turned out to be the most efficient
usage.

Furthermore, to reduce the context unifier computation overhead, potential propaga-
tions for a new lemma are not computed in retrospect, but onlywhen adding a literal to
the context unifies with the lemma. Therefore, when after an application ofBackjump

a lemma is learnt, it does not propagate the negated decisionliteral L
sko

. This happens
only, as an optimization, if the lemma is unit, which might infact propagate a strictly
p-preservingly more general literal thanL

sko
. In conjunction with the above described

shortening of grounded lemmas with root context literals, this case occurs more often in
the grounded than the lifted case, making the grounded lemmasometimes more effective
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than the corresponding lifted one.
In general, applications ofPropagate are restricted inDarwin to those withuniversal

propagated literals (i.e., containing no parameters). Adding non-universal propagated
literals to the context is not only unnecessary for completeness but also counterproduc-
tive for efficiency because it substantially increases the number of context unifiers usable
by Decide or Propagate. On the other hand, adding literals propagated by a lemma is
useful to avoid conflicts, as we discussed earlier in the paper. In the current implemen-
tation, we strike a balance between these two conflicting needs by adding to the context
a non-universal propagated literal only if the propagatingclause has been learned as a
lemma at leastn times in the derivation—a crude but easily computed estimate of the
lemma’s usefulness in avoiding future conflicts. Experimentally, a value ofn = 3 seems
to give the best results.

3.5 Forget

At the moment we have implemented only a relatively unsophisticated scheme for for-
getting lemmas, again inspired by similar schemes in the SATliterature. In this scheme,
there exists an upper limitu and a lower limitl on how many lemmas are stored at any
time. If a new lemma is learned afteru has been reached, theworst lemmas are removed
until there are onlyl lemmas left. The new lemma is then added to this smaller lemma
set.

The value of a lemma is determined by a score, which is initially set to the worst
score among the existing lemmas. Whenever the lemma is responsible for an appli-
cation of Fail, i.e., the lemma is involved in the regression of a conflict, its score is
incremented by 1. When the worst lemmas are removed, all scores are divided by 2.
As an alternative, we also tried to decay the score periodically after a certain number of
Backjump applications. This score is not currently used in the heuristics for choosing
which lemma to propagate on, mostly because it is not trivialto integrate properly into
the system’s architecture. Unfortunately, these schemes did not lead to any improvement
over not applyingForget at all.

4 Experimental Evaluation

In this section we present our initial experimental evaluation of the three learning meth-
ods presented above. We considered over two different problem sets.

4.1 First problem set

We first evaluated the effectiveness of lemma learning inDarwin over the TPTP problem
library version 3.1.1. SinceDarwin can handle only clause logic, and has no dedicated
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Method Solved Avg Total Speed Failure Propag. Decide
Probls Time Time up Steps Steps Steps

no lemmas 896 2.7 2397.0 1.00 24991 597286 45074
propositional 895 2.8 2507.6 0.96 20056 570962 37102
grounded 895 2.4 2135.6 1.12 9476 391189 18935
lifted 898 2.4 2173.4 1.10 9796 399525 19367

no lemmas 244 3.0 713.9 1.00 24481 480046 40766
propositional 243 3.4 821.1 0.87 19546 453577 32794
grounded 243 1.8 445.1 1.60 8966 273849 14627
lifted 246 2.0 493.7 1.45 9286 282600 15059

no lemmas 108 5.2 555.7 1.00 23553 435219 38079
propositional 107 4.5 478.8 1.16 18703 392616 30209
grounded 108 2.2 228.5 2.43 8231 228437 12279
lifted 111 2.6 274.4 2.02 8535 238103 12688

no lemmas 66 5.0 323.9 1.00 21555 371145 34288
propositional 66 4.5 289.7 1.12 17044 333648 27026
grounded 67 1.7 111.4 2.91 6973 183292 9879
lifted 70 2.3 151.4 2.14 7275 193097 10294

Table 2: Problems that respectively take at least 0, 3, 20, and 100 applications ofBack-
jump without lemmas within 300s, whereSolved Problemsgives the number of prob-
lems solved by a configuration, while the remaining values are for the subsets of 894,
241, 106, 65 problems solved byall configurations.Avg Time (Total Time) gives the
average (total) time needed for the 894 problems solved by all configurations,Speed up
shows the run time speed up factor of each configuration versus the one with no lem-
mas.Failure, Propagate, andDecidegive the number of rule applications, withFailure
including bothBackjump andFail applications.

inference rules for equality, we considered only clausal problems without equality. Fur-
thermore, asDarwin never applies theDecide rule in Horn problems [Fuc04], and thus
also never backtracks, we further restricted the selectionto non-Horn problems only. All
tests were run on Xeon 2.4Ghz machines with 1GB of RAM. The imposed limit on the
prover were 300s of CPU time and 512MB of RAM.

The first 4 rows of Table 2 summarize the results for various configurations ofDar-
win, namely, not using lemmas and using lemmas with the propositional, grounded, and
lifted regression methods.

The first significant observation is that all configurations solve almost exactly the
same number of problems, which is somewhat disappointing. The situation is similar
even with an increased timeout of one hour per problem. A sampling of the derivation
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traces of the unsolved problems, however, reveals that theycontain only a handful of
Backjump steps, suggesting that the system spends most of the time in propagation steps
and supporting operations such as the computation of context unifiers.

The second observation is that for the solved problems the search space, measured in
the number ofDecide applications, is significantly pruned by all learning methods (with
18% to 58% less decisions), although this improvement is only marginally reflected in
the run times. This too seems to be due to the fact that most derivations involve only a
few applications ofBackjump. Indeed, 652 of the 898 solved problems require at most
2 backjumps. This implies that only a few lemmas can be learned, and thus their effect
is limited and the run time of most problems remains unchanged. Based on these tests,
it is not clear if this an intrinsic property of the calculus,an artifact of the specific proof
procedure implemented byDarwin, or a feature of the TPTP library.

For a more meaningful comparison, the rest of Table 2 shows the same statistics, but
restricted to the problems solved by the no lemmas configuration using, respectively, at
least 3, 20, and 100 applications ofBackjump within the 300s time limit. There, the
effect of the search space pruning is more pronounced and does translate into reduced
run times. In particular, the speed up of each lemma configuration with respect to the
no lemmas one steadily increases with the difficulty of the problems, reaching a factor
of almost 3 for the most difficult problems in the grounded case. Moreover, the lifted
lemmas configuration always solves a few more problems than the no lemmas one.

Because of the wayDarwin’s proof procedure is designed [BFT06c], in addition to
pruning search space, lemmas may also cause changes to the order in which the search
space is explored. Since experimental results for unsatisfiable problems are usually more
stable with respect to different space exploration orders,it is instructive to separate the
data in Table 2 between unsatisfiable and satisfiable problems. These data are provided
respectively in Table 3 and Table 4.

The separated results for unsatisfiable and satisfiable problems show the same pat-
tern as the aggregate results in Table 2. It is interesting tonotice, however, that for the
unsatisfiable problems solved by all configurations and solved by the no lemmas one
with at least 0, 3, 20, and 100 backjumps the speed up factors for grounded lemmas are
respectively 1.07, 1.55, 3.74, and 4.19. This actually compares more favorably overall
to the corresponding speed up factors in Table 2: resp., 1.12, 1.60, 2.43, and 2.91.

Plotting the individual run times of the no lemmas configuration against the lemma
configurations, and the grounded against the lifted lemmas configuration for all solved
problems with at least 3 backjumps, as seen in Figure 4, clearly shows the positive effect
of learning. For nearly all of the problems, the performanceof the grounded lemmas
configuration is better, often by a large margin, than the onewith no lemmas. A similar
situation occurs with lifted lemmas, although there are more problems for which the no
lemmas configuration is faster. In contrast, the plot for thepropositional configuration
looks considerably different, with few outliers for eitherconfiguration and basically all
points closely clustered around the diagonal. Finally, thecomparison of the grounded
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Method Solved Avg Total Speed Failure Propag. Decide
Probls Time Time up Steps Steps Steps

no lemmas 563 3.3 1827.4 1.00 22741 495924 35831
propositional 562 3.5 1975.5 0.92 18478 476066 28959
grounded 561 3.0 1705.2 1.07 8336 294819 11620
lifted 562 3.1 1731.8 1.05 8610 300273 12004

no lemmas 193 1.9 364.4 1.00 22283 419920 35121
propositional 192 2.7 508.9 0.72 18020 399969 28249
grounded 191 1.2 234.7 1.55 7878 218739 10910
lifted 192 1.4 271.4 1.34 8152 224587 11294

no lemmas 89 2.9 255.6 1.00 21589 388200 34109
propositional 89 2.4 216.2 1.18 17390 352350 27328
grounded 90 0.8 68.2 3.74 7352 188032 10216
lifted 90 1.2 103.1 2.48 7615 194755 10581

no lemmas 61 3.7 226.4 1.00 20157 351521 32011
propositional 61 3.1 190.8 1.19 16169 317696 25570
grounded 61 0.9 54.0 4.19 6484 163481 9058
lifted 62 1.4 88.2 2.57 6748 170424 9429

Table 3: Unsatisfiable problems that respectively take at least 3, 20, and 100 applications
of Backjump without lemmas within 300s, whereSolved Problemsgives the number of
problems solved by a configuration, while the remaining values are for the subsets of
561, 191, 89, and 61 problems solved by all configurations.

and lifted learning methods shows that the gained generality of the latter almost never
pays off in terms of run time, except that it allows the systemto solve three additional
problems.

Overall, the results above indicate that the propositionalmethod is not nearly as
effective at pruning the search space or decreasing the run time as the other two learn-
ing methods, confirming our hypothesis that generalizing pays off. They also show
that lifted lemmas generate moreDecide applications and have higher overhead than
grounded lemmas. The larger number of decision steps of the lifted method versus the
grounded one seems paradoxical at first sight, but can be explained by observing that
lifted lemmas—in addition to avoiding or detecting early a larger number of conflicts—
also cause the addition of more general propagated literalsto a context, leading to a
higher number of (possibly useless) context unifiers. Furthermore, due to the increased
generality of lifted lemmas and the the way they are condensed when they are too long,
sometimesPropagate applies to a grounded lemma but not the corresponding lifted
lemma, making the latterlesseffective at avoiding conflicts (see Section 3).
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Method Solved Avg Total Speed Failure Propag. Decide
Probls Time Time up Steps Steps Steps

no lemmas 333 1.7 569.6 1.00 2250 101362 9243
propositional 333 1.6 532.1 1.07 1578 94896 143
grounded 334 1.3 430.4 1.32 1140 96370 7315
lifted 336 1.3 441.6 1.29 1186 99252 7363

no lemmas 51 7.0 349.5 1.00 2198 60126 5645
propositional 51 6.2 312.2 1.12 1526 53608 4545
grounded 52 4.2 210.4 1.66 1088 55110 3717
lifted 54 4.4 222.3 1.57 1134 58013 3765

no lemmas 18 17.7 300.1 1.00 1964 47019 3970
propositional 19 9.4 160.3 1.87 879 40405 2063
grounded 21 10.1 171.3 1.75 920 43348 2107
lifted 18 15.4 262.6 1.14 1313 40266 2881

no lemmas 5 24.4 97.5 1.00 1398 19624 2277
propositional 5 24.7 98.9 0.99 875 15952 1456
grounded 6 14.4 57.4 1.70 489 19811 821
lifted 8 15.8 63.2 1.54 527 22673 865

Table 4: Satisfiable problems that respectively take at least 3, 20, and 100 applications
of Backjump without lemmas within 300s, whereSolved Problemsgives the number of
problems solved by a configuration, while the remaining values are for the subsets of
332, 50, 17, and 4 problems solved by all configurations.

The higher overhead of the lifted method can be attributed totwo main reasons. The
first is of course the increased number of context unifiers to be considered for rule ap-
plications. The second is the intrinsically higher cost of the lifted method versus the
grounded one, because of its use of unification—as opposed tomatching—operations
during regression, and its considerable post-processing work in removing multiple vari-
ants of the same literals from a lemma—something that occursquite often.

4.2 Second problem set

Given that only a minority of the TPTP problems we could use inthe first exper-
iment cause a considerable amount of search and backtracking, and that, on the other
hand, many decidable fragments of first-order logic are NP-hard, we considered a second
problem set, stemming from an application ofDarwin for finite model finding [BFT06a].
This application follows an approach similar to that of systems like Paradox [CS03]. To
find a finite model of a given cardinalityn, a clause set, with or without equality, is con-
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Figure 4: Comparative performance, on a log-log scale, for different configurations for
problems with at least 3 applications ofBackjump. For readability, the cutoff is set at
100s instead of 300s, because in all cases less than a handfulof problems are solved in
the 100-300s range.

verted into an equisatisfiable Bernays-Schönfinkel problem (instead of a propositional
problem as in Paradox) that includes the cardinality restriction.

If Darwin proves the latter clause set unsatisfiable, it increases thevalue ofn by 1
and restarts, repeating the process until it finds a model—and diverging if the original
problem has no finite models. SinceDarwin is a decision procedure for the Bernays-
Schönfinkel class, starting withn above at 1, it is guaranteed to find a finite model of
minimum size if one exists. In the configurations with learning, Darwin uses lemmas
during each iteration of the process and carries over to the next iteration those lemmas
not depending on the cardinality restriction. Since a run over a problem with a model of
minimum sizen includesn−1 iterations over unsatisfiable clause sets, it is reasonable
to consider together all then iterations in the run when measuring the effect of learning.

Table 5 shows our results for the 815 satisfiable problems of the TPTP library. To
give an idea how we compare to other systems, we remark that Mace 4 [McC03] and
Paradox 1.3, currently the fastest finite model finders available, respectively solve 553
and 714 of those problems, makingDarwin second only to Paradox.

In general, solving a problem inDarwin with the process above requires significantly
more applications ofBackjump than for the set of experiments presented earlier. As a
consequence, the grounded lemmas configuration performs significantly better than the
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Method Solved Average Total Speed Failure Propagate Decide
Probls Time Time up Steps Steps Steps

no lemmas 657 5.6 3601.3 1.00 404237 16122392 628731
propositional 658 4.4 2827.1 1.27 198023 7859965 351236
grounded 669 3.3 2106.3 1.71 74559 4014058 99865
lifted 657 4.7 3043.9 1.18 41579 1175468 68235

no lemmas 162 17.8 2708.6 1.00 398865 15911006 614572
propositional 163 13.0 1971.1 1.37 193302 7659591 338074
grounded 174 7.9 1203.1 2.25 70525 3833986 87834
lifted 162 14.0 2126.2 1.27 38157 1023589 57070

no lemmas 52 36.2 1702.9 1.00 357663 14580056 555015
propositional 53 20.5 961.9 1.77 161851 6540084 291492
grounded 64 10.5 495.3 3.44 53486 3100339 64845
lifted 57 11.5 538.7 3.16 26154 678319 39873

Table 5: Satisfiable problems that transformed to a finite model representation respec-
tively take at least 0, 100, and 1000 applications ofBackjump without lemmas within
300s, whereSolved Problemsgives the number of problems solved by a configuration,
while the remaining values are for the subsets of 647, 152, 47problems solved byall
configurations.

no lemmas configuration, solving the same problems in about half the time, and also
solving 12 new problems. The lifted configuration on the other hand performs only
moderately better. Although the search space is significantly reduced, the overhead of
lemma simplification almost outweighs the positive effectsof pruning. Restricting the
analysis to harder problems shows that the speed up factor ofgrounded lemmas increases
gradually to about 3.5. This confirms that lemmas do have a significant positive effect if
the focus in solving a problem lies on search instead of constraint propagation.

5 Conclusion and Further Work

We have introduced three methods for implementing conflict-based learning in proof
procedures for the Model Evolution calculus. The methods have various degrees of gen-
erality, implementation difficulty, and practical effectiveness. Our initial experimental
results indicate that for problems that are not trivially solvable by theDarwin implemen-
tation and do not cause too much constraint propagation all methods have a dramatic
pruning effect on the search space. The grounded method, however, is the most effective
at reducing the run time as well.

We plan to investigate the grounded and the lifted methods further, possibly adapting
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to our setting some of the heuristics developed in [SE94], inorder to make learning more
effective and reduce its computational overhead. We also plan to evaluate experimentally
our learning methods with sets of problems besides those in the TPTP library.

References

[AS92] Owen L. Astrachan and Mark E. Stickel. Caching and Lemmaizing in Model
Elimination Theorem Provers. In Deepak Kapur, editor,11th International
Conference on Automated Deduction, LNAI 607, pages 224–238. Springer-
Verlag, 1992.

[BFT06a] Peter Baumgartner, Alexander Fuchs, and Cesare Tinelli. First-order meth-
ods for computing finite and minimal finite models. In Preparation, May
2006.

[BFT06b] Peter Baumgartner, Alexander Fuchs, and Cesare Tinelli. Implementing the
Model Evolution Calculus.International Journal of Artificial Intelligence
Tools, 15(1):21–52, 2006.

[BFT06c] Peter Baumgartner, Alexander Fuchs, and Cesare Tinelli. Lemma learning
in the model evolution calculus. Technical report, The University of Iowa,
2006.

[BT03a] Peter Baumgartner and Cesare Tinelli. The Model Evolution Calculus. In
Franz Baader, editor,CADE-19 – The 19th International Conference on Au-
tomated Deduction, volume 2741 ofLecture Notes in Artificial Intelligence,
pages 350–364. Springer, 2003.

[BT03b] Peter Baumgartner and Cesare Tinelli. The Model Evolution Calculus.
Fachberichte Informatik 1–2003, Universität Koblenz-Landau, Universität
Koblenz-Landau, Institut für Informatik, Rheinau 1, D-56075 Koblenz,
2003.

[CL73] C. Chang and R. Lee.Symbolic Logic and Mechanical Theorem Proving.
Academic Press, 1973.
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A Proofs

Lemma 2.7 If A0 =⇒∗
gr E | S and the clauseE is obtained fromE by replacing each

constant ofE not in Φ by a fresh variable, thenE is conflicting in any context that
containsEΛ.

Proof. Suppose a regression derivationA0 =⇒∗
gr E | S of length l ≥ 0 as given. We

directly prove the claim by induction onl .

l = 0) By construction ofA0, E is the clauseC0σ0, a ground instance of some clauseC0

which is conflicting inΛ because of the context unifierσ0. If C0 = L1∨·· ·∨Ln, for some
n≥ 0, the context unifierσ0 of C0 exists against any context containing{Lσ0

1 , . . . ,Lσ0
n },

which is, by definition, the setEΛ.
The constants inC0σ0 and not inΦ are just the fresh constants introduced byσ0.

Thus,E = C0σ0. Because any standard unification algorithm computes idempotent uni-
fiers, it is safe to assume that the context unifierσ0 is idempotent. It followsC0σ0 =
C0σ0σ0, and thusσ0 is a context unifier ofE against any context containing{Lσ0

1 , . . . ,Lσ0
n }.

l > 0) We use notation similar as introduced in theGRegress rule above. Thus let

D∨M | S′, M 7→ Lσ =⇒gr D∨Cσµ | S′,T

be the lastGRegress application (i.e.,E = D∨Cσµ). We assume by induction the result
to hold forD∨M, i.e., thatD∨M is conflicting in any context that contains(D∨M)Λ,
whereD∨M is obtained fromD∨M by replacing each constant ofD∨M not in Φ by
a fresh variable. We will directly show that under these assumptionsE = D∨Cσµ is
conflicting in any context that containsEΛ.

Let (D∨M)Λ = {Kδ
1, . . . ,Kδ

m,Mδ}, whereD = K1∨ ·· · ∨Km, for somem≥ 0, and
δ the context unifier such thatD∨M is conflicting withΛ because ofδ. As D∨M is
conflicting withΛ because ofδ, δ moves parameters to parameters only. More precisely,
by constructionD∨M is parameter-free, and the only parameters moved byδ can thus be
assumed to be those in{Kδ

1, . . . ,Kδ
m,Mδ}, and it holds(Par({Kδ

1 , . . . ,Kδ
m,Mδ}))δ ⊆V.

We will need this result further below.
By the above notation, the clauseE is of the formD∨Cσµ, for some context unifier

σ of a clauseL∨C against some context literals ofΛ, whereLσ is a propagated literal
andµ is a most general unifier ofM andLσ (in fact, µ is a matcher ofLσ to M, asM is
ground). For further use below, we write the clauseL∨C asL∨L1∨ ·· · ∨Ln, for some
n≥ 0. The literals paired withL∨C by σ then are denoted by{Lσ,Lσ

1, . . . ,Lσ
n}.

The substitutionµcan be written asµ= µ′ ◦γ, whereµ′ is a mgu ofM andLσ (in fact,
a matcher ofLσ to M) andγ is a substitution that moves all the parameters and variables
in M to the fresh constants such thatMγ = M. Assume thatγ has furthermore been
extended to move all the remaining parameters and variablesin Cσµ to fresh constants.
It follows Cσµ= Cσµ′γ, and, withE = D∨Cσµ we getE = D∨Cσµ′.
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With (D∨M)Λ = {Kδ
1, . . . ,Kδ

m,Mδ} from above and{Lσ,Lσ
1, . . . ,Lσ

n} being the liter-
als paired withL∨C by σ we get(D∨Cσµ′)Λ = {Kδ

1, . . . ,Kδ
m,Lσ

1, . . . ,Lσ
n}(= EΛ).

It remains to prove thatD∨Cσµ′ is conflicting in any context that contains(D∨
Cσµ′)Λ. For this, we show that the substitutionσµ′δ is a context unifier ofD∨Cσµ′

againstΛ with paired literals{Kδ
1, . . . ,Kδ

m,Lσ
1, . . . ,Lσ

n}. It suffices to take a literalKi

from D and a literalL j from C arbitrary and to show that

(1) (a)Kiσµ′δ = Kδ
i σµ′δ and (b)(L jσµ′)σµ′δ = Lσ

j σµ′δ, and

(2) (a)(Par(Kδ
i ))σµ′δ ⊆V and (b)(Par(Lσ

j ))σµ′δ ⊆V.

First we show that neitherσ nor µ′ act onKi, i.e., thatKiσ = Ki andKiµ′ = Ki hold: the
literal Ki is a literal fromD, which is obtained from the (ground) clauseD by replacing
each constant inD not in Φ by a fresh variable. Thus,Ki is parameter-free and all its
variables are disjoint from the variables inL andLσ. Thus, the context unifierσ (of the
clauseL∨C) need not act on the clauseD∨M, and hence in particular not onKi, which
implies Kiσ = Ki. Similarly, recall thatµ′ is a matcher ofLσ to M. Clearly we may
assumeµ′ to move the variables and parameters ofLσ only. With the freshness of the
variables inD∨M, thus,Kiµ′ = Ki.

Next we show, similarly, that neitherσ nor µ′ acts onKδ
i , i.e., thatKδ

i σ = Kδ
i and

Kδ
i µ′ = Kδ

i hold. For this, we need the fact that context literals used incontext unifiers

are fresh. Thus, neitherσ nor µ′ acts onKδ
i , which is a context literal of the context

unifier δ, and the stated equalities follow.

From Kδ
i σ = Kδ

i and Kδ
i µ′ = Kδ

i and together withKiσ = Ki, Kiµ′ = Ki the above

equation (1-a) is equivalent toKiδ = Kδ
i δ, which holds trivially by notation.

With Kδ
i σ = Kδ

i andKδ
i µ′ = Kδ

i , condition (2-a) is equivalent to(Par(Kδ
i ))δ ⊆ V.

Recall thatD∨M is conflicting withΛ because ofδ. By definition,δ thus does not have
a remainder, and(Par(Kδ

i ))δ ⊆V follows in particular.
It remains to prove conditions (1-b) and (2-b).
Regarding (1-b), it is safe to assume thatσ is idempotent. Recall thatµ′ is a matcher

form Lσ to M, and all variables ofM are fresh, as argued further above. It is not difficult
to see thatσµ′ must be idempotent, too. Thus (1-b) is equivalent toL jσµ′δ = Lσ

j σµ′δ.

This, however, follows trivially fromL jσ = Lσ
j σ, which holds by notation.

Regarding (2-b), notice first(Par(Lσ
j ))σ⊆V. This holds becauseLσ is a propagated

literal and, by definition ofPropagate, none of the literals inCσ is a remainder literal.
In particular, thus(Par(Lσ

i ))σ ⊆ V. Next we will extend this inequality and obtain
(Par(Lσ

j ))σµ′δ ⊆V, which will complete the proof.

Recall from the regression step we are considering thatM is paired withLσ. Re-
call further thatD∨M is conflicting withΛ because ofδ. The literal paired withM in
the context unifierδ is thus a fresh p-variant ofLσ, say,Lσρ for some appropriate p-
renamingρ. That is,Mδ = Lσρδ. We also know thatLσ can be instantiated toM by µ′.
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That is,Lσµ′ = M. Applying δ yieldsLσµ′δ = Mδ = Lσρδ. Now, asD∨M is conflicting
because ofδ, δ has no remainder literals. In particular, thus,(Par(Lσρ))δ ⊆V. From
this it is not too difficult to see thatρδ maps all parameters ofLσ to parameters. With
Lσµ′δ = Mδ = Lσρδ it follows thatµ′δ maps all parameters ofLσ to parameters. Recall
thatµ′ can be restricted to move parameters and variables ofLσ only. All other parame-
ters thatµ′δ moves are moved byδ to parameters (becauseδ has no remainder literals).
Together thus we obtain from(Par(Lσ

j ))σ ⊆V the desired result(Par(Lσ
j ))σµ′δ ⊆ V.
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