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Abstract. Recent years have seen considerable interest in procefduresm-
puting finite models of first-order logic specifications. @ifithe major paradigms,
MACE-style model building, is based on reducing model deéna sequence of
propositional satisfiability problems and applying (e#iaf) SAT solvers to them.
A problem with this method is that it does not scale well, &sgtopositional for-
mulas to be considered may become very large.

We propose instead to reduce model search to a sequencéstiibdity prob-
lems made of function-free first-order clause sets, and plygefficient) theo-
rem provers capable of deciding such problems. The mainshppéhis method
is that first-order clause sets grow more slowly than theppsitional counter-
parts, thus allowing for more space efficient reasoning.

In the paper we describe the method in detail and show howiritégrated into
one such prover, Darwin, our implementation of the Model IEtion calculus.
The results are general, however, as our approach can berugsgdciple with
any system that decides the satisfiability of function-fiest-order clause sets.
To demonstrate its practical feasibility, we tested ourragph on all satisfiable
problems from the TPTP library. Our methods can solve a fiagmit subset of
these problems, which overlaps but is not included in thesestubf problems
solvable by state-of-the-art finite model builders suchaséox and Mace4.

1 Introduction

Methods for model computation can be classified as thoseifeatly search for a finite
model, like the extended PUHR tableau method [BT98], thénods in [Bez05,dNMO06]
and the methods in the SEM-family [Sla92,Zha95,McC03],tande based on transfor-
mations into certain fragments of logic and relying on cepanding readily available
systems (see [BS06] for a recent approach).

The latter approach includes the family of MACE-style mobleillders [McCO03].
These systems search for finite models, essentially, byclsegrthe space of inter-
pretations with domain sizes?, ..., in increasing order, until a model is found. The
MACE-style model builder with the best performance todgysaehaps the Paradox sys-
tem [CSO03]. We present in this paper a new approach in the MR@tadox tradition
which however capitalizes on new advances in instantidtased first-order theorem
proving, as opposed to advances in propositional satiifiads in the case of MACE



and Paradox. The general idea in our approach is the samadta fnodel withn el-
ements for a given a clause set possibly with equality, thasd set is first converted
into a simpler form by means of the following transformation

1. Each clause is flattened.

2. Eachn-ary function symbolis replaced by an- 1-ary predicate symbol and equal-
ity is eliminated.

3. Clauses are added to the clause set that impose totatisgramts on the new pred-
icate symbols, but over a domain of cardinatity

The details of our transformation differ in various aspdicm the MACE/Paradox
approach. In particular, we add no functionality constisaover the new predicate sym-
bols. The main difference, however, is that we evenuallyicedhe original problem
to a satisfiability problem over function-free clause logiéthout equality), not over
propositional logic. As a consequence of the differentdalggic, we do not use a SAT
solver to look for models. Instead, we use a varianDafwin [BFTO06a], our imple-
mentation of the Model Evolution calculus [BT03], which caecide satisfiability in
that logic.

While we do take advantage of some of the distinguishingifeatofDarwin and
the Model Evolution calculus, especially in the way modets@nstructed, our method
is general enough that it could use without much additioffalteany other decision
procedure for function-free clause logic, for instance, iamplementation of one of the
several instance-based methods for first-order reasohatgate currently enjoying a
growing popularity.

In this paper we illustrate our method in some detail, présgrthe main trans-
lation and its implementation withiBarwin, and discussing our initial experimental
results in comparison with Paradox itself and with Mace4 @@8], a competitive,
non-MACE-like (despite the name) model builder. The resmidlicate that our method
is rather promising as it can solve 1074 of the 1251 satigfiptidblems in the TPTP [i-
brary [SS98]. These problems are neither a subset nor asmipéthe sets of 1083 and
802 problems respectively solved (under the same expetahsettings) by Paradox
and Mace4.

2 Preliminaries

We use standard terminology from automated reasoning. ¥leasas given a signa-
ture~ = 2Z¢ U Zp of function symbolsk (including constants) and predicate symbols
>p. As we are working (also) with equality, we assuine contains a distinguished
binary predicate symbat, used in infix form, with denoting its negation. Terms,
atoms, literals and formulas ov&rand a given (denumerable) set of variablesre
defined as usual. A clause is a (finite) implicitly univergajlantified disjunction of
literals. Aclause sets a finite set of clauses. We use the le@eo denote clauses and
the letterL to denote literals.

For a given atonP(ty,...,t,) (possibly an equation) the terns...,t, are also
called thetop-levelterms (ofP(ty, ... ,tn)).



With regards to semantics, we use the notions of (first-grskisfiabilityand E-
satisfiabilityin a completely standard way.¥fis an €-)interpretation thefJ| denotes
the domain (or universe) df. Recall that inE-interpretations the equality relation is
interpreted as théentity relation i.e. for everyE-interpretationJ it holds ~? =
{(d,d) | d € |J|}. We are primarily interested in computirfigite models, which are
models (of the given clause set) with a finite domain.

In the remainder of the paper, we assume Mas a given (finite) clause set over
signaturex = 3¢ U Zp, wWhereXr (resp.Zp) are the function symbols (resp. predicate
symbols) occuring itM.

3 Finite Model Transformation

In this section we give a general description of the tranfttioms we apply to the input
problem to reduce it to an equisatisfiable problem in fumcfi@e clause logic without
equality. We do that by defining various transformationsua clauses.

In the rules, we writd. v C ~~ C’ vV C to indicate that the claugg’ v C is obtained
from the clausé. Vv C by (single) application of one of these rules.

3.1 Basic Transformation

(1) Abstraction of positive equations.

s yVC ~ s xVXx~yVvC if sisnota variable and
xis a fresh variable
X=tVC ~ tsyvxyVvC iftisnotavariable and

yis a fresh variable
sx~tVC ~ s¥%XxVtzyvxa~yVvC if sandt are not variables and
x andy are fresh variables

These rules make sure that all (positive) equations aredwstwariables.
(2) Flattening of non-equations.

(=)P(...,s,...)VC ~» (7)P(...,X,...)Vs#xVC if P# =, sis nota variable, and
xis a fresh variable

(3) Flattening of negative equations.

f(...,5..)%tVC ~ f(...,%...)%&tVs¥#xVC if sisnota variable
andx is a fresh variable

(4) Separation of negative equations.

S#%tVC ~ s xVt#xVC ifneithersnort is a variable,
andx andy are fresh variables

This rule makes sure that at least one side of a (negativadtieguis a variable.
Notice that this property is also satisfied by the transfdiona (2) and (3).



(5) Removal of trivial negative equations.
x#yVvVC ~» Co whereo= {x— Yy}
(6) Orientation of negative equations.
X#tVC ~ t#%xVvC iftisnota variable

For a clauseC, let thebasic transformation of Cdenoted as (C), be the clause ob-
tained fromC by applying the transformations (1)-(6), in this order,leas long as
possible! We extend this notation to clause sets in the obvious wayz.@) is the
clause set consisting of the basic transformation of allsga inM.

The two flattening transformations alone, when applied estizely, turn a clause
into aflat one, where a clauseflat if:

1. each top-level term of each of its negative equations igreble or has the form
f(X1,...,%n), wheref is a function symboln > 0, andxg, ..., X, are variables;
2. each top-level term of each of its non-equations is a bkgia

Similar flattening transformations have been consideréatbas a means to deal more
efficiently with equality within calculi for first-order lag without equality [Bra75,BGV98].
The basic transformation above is correct in the followiegse.

Lemma 1l (Correctness ofg). The clause set M is E-satisfiable if and onlgifM) is
E-satisfiable.

Proof. That flattening preservdssatisfiability (both ways) is well-know (cf. [Bra75]).
Regarding transformations (1), (4), (5) and (6), the preattraightforward or trivial.

O
3.2 Conversion to Relational Form

It is not hard to see that, for any clausethe following holds for the clause sg{(C):

1. each of its positive equations is between two variables,
2. each of its negative equations is flat and of the féfm, ..., x,) %y, and
3. each of its non-equations is flat.

After the basic transformation, we apply the following ongning each-ary func-
tion symbolf into a (new)n+ 1-ary predicate symbdts.

(7) Elimination of function symbols.
f(X1,...,%) ZYVC ~~» —R¢(xq,...,%,y) VC

4 |tis easy to see that this process always terminates.



Let 3r(M) be the clause set obtained from an exhaustive applicatithifransfor-
mation tos (M).

Recall that am+ 1-ary relationR over a sefAis left-totalif for everyay,...,ah € A
there is arb € Asuch thatay, . ..,an,b) € R The relatiorRis right-uniqueif whenever
(a,...,an,b) € Rthere is no other tuple of the forfay, ...,a,,b") in R.

Because of the above properties (1)—-(330M), the transformatiosr(M) is well-
defined, and will produce a clause set with no function sysbbhis transformation
however is not unsatisfiability preserving unless one awmsionly left-total interpre-
tations for the predicate symbd®. More formally:

Lemma 2 (Correctness ofsg). The clause set M is E-satisfiable if and only if there is
an E-model of 38r(M) such that(R¢)? is left-total, for every function symbold .

Proof. The direction from left to right is easy. For the other diret letJ be anE-
model of 8g(M) such thatRy)” is left-total for every function symbdl € Z.

Recall that functions are nothing but left-total and rigimique relations. We will
show how to obtain frori anE-modelJ’ of 3r(M), that preserves left-totality and adds
right-uniqueness, i.e., such tr'(ﬂf)j/ is both left-total and right-unique for afl € 2.
Since such an interpretation is clearly a modeb¢M), it will the follow immediately
by Lemma 1 thaM is E-satisfiable.

We obtainJ’ as the interpretation that is likg except tha(Rf)j/ contains exactly
one elementds, ..., d,,d), foreveryds, ..., d, € |J|, chosen arbitrarily froniR¢ ) (this
choice exists becaug®;)? is left-total). It is clear from the construction th@)”' is
right-unique and left-total. Triviallyj’ interpretesx as the identity relation, becau3e
does, agl is anE-interpretation. Thusj’ is anE-interpretation, too.

It remains to prove that witli being a model o8gr(M) then so isJ’. This follows
from the fact that every occurrence of a predicate syrfpolvith f € ¢, in the clause
setr(M) is in a negative literal. But then, sin¢&)” C (R¢)? by construction, it
follows immediately that any clause 6k(M) satisfied byJ is also satisfied by’. O

The significance of this lemma is that it requires us to inetrfne predicate symbols
Rs as left-total relationgput not necessarily as right-unique on€onsequently, right-
uniqueness will not be axiomatized below.

3.3 Addition of Finite Domain Constraints

To force left-totality, one could add the Skolemized vensid axioms of the form
vXla s 7Xn3y Ry (X17 s ,Xn,y)

to 8;(M). The resulting set would bE-satisfiable exactly wheM is E-satisfiable>
However, since we are interested in finite satisfiability, wge finite approximations
of these axioms. To this end, ldtbe a positive integer, theomain sizeWe consider

5 Altogether, this proves the (well-known) result that fiootsymbols are “syntactic sugar”.
They can always be eliminated in an equisatisfiability pneag way, at the cost of introducing
existential quantifiers.
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Fig. 1. Totality axioms for constants and their triangular form

the expansion of the signature 8f(M) by d fresh constant symbols, which we name
1,...,d. Intuitively, instead of the totality axiom above we can nase the axiom

VX1, .. Xn3Y € {1,...,d} Re(Xq,...,Xn,Y) .
Concretely, iff is ann-ary function symbol let the clause
Rt (X1,...,%1, 1) V- VR (X4, .., Xn,d)

be thed-totality axiom for f and let®» (d) be the set of alb-totality axioms for all
function symbolsf € Z¢. The setn (d) axiomatizes the left-totality afR¢)?, for every
function symbolf € ¢ and interpretatiod with |J| = {1,...,d}.

3.4 Symmetry Breaking

Symmetriebave been identified as a major source for inefficienciesiisitain solving
systemsValue symmetnapplies to a problem when a permutation of the values (or
better, value vector) assigned to variables constitutedutian to the problem, too. A
dual symmetry property may apply to the (decision) variallea problem, giving rise
to variable symmetryBreaking such symmetries has been recognized as a source fo
considerable efficiency gains.

It is easy to break some value symmetries introduced by misgiglomain values
to constants. Suppo&g containsm constantgs, ..., cm. Recall thatp (d) contains, in
particular, the axioms shown in Figure 1(a). Similarly toawfs done with Paradox,
these axioms can be replaced by the more “triangular” forowshin Figure 1(b). This
form reflects symmetry breaking of assigning values for ttst @i constants. In fact,
one could further strengthen the symmetry breaking axioyaduling (unit) clauses
like =R¢,(2),... =R, (d). We do not add them, as they do not constrain the search for a
model further (they are all pure).

In the sequel we will refer to the clause set as describeddsened).



3.5 Putting all Together

Since we want to use clause logigthout equality as the target logic of our overall
transformation, the only remaining step is the explicitoaxatization of the equality
symbol~ over domains of sizd—so that we can exploit Lemma 2 in the (interesting)
right-to-left direction. This is easily achieved with thagse set

£(d)={i#j|1<i,j<dandi#j}.

Finally then, we define thiénite-domain transformation of Ms the clause set
F(M,d) :=3r(M)UD(d) U E(d).
Putting all together we arrive at the following first mainuks

Theorem 3 (Correctness of the Finite-Domain Translation)Let d be a positive in-
teger. Then, M is E-satisfiable by some finite interpretatigih domain size d if and
only if 7 (M, d) is satisfiable.

Proof. Follows from Lemma 2 and the comments abovezof) and £ (d), together
with the observation that if (M, d) is satisfiable it is satisfiable in a Herbrand interpre-
tation with universg1,...,d}.

More precisely, for the only-if direction assume as givenexlifand model of
F (M,d) with universe{1,...,d}. Itis clear from the axiomg (d) thatJ assigns false
to the equatiorid’ ~ d”), for any two different elementd’,d” € {1,...,d}. Now, the
modelJ can be modified to assign true to all equatidhs: d’, for all d’ € {1,...,d}
and the resulting-interpretation will still be a model for (M, d). This is, because the
only occurences of negative equationgifM, d) are those contributed bw/(d), which
are still satisfied after the chan§ét is this modified model that can be turned into an
E-model ofM. O

This theorem suggests immediately a (practical) proceusearch for finite mod-
els, by testingr (M, d) for satisfiability, withd = 1,2,..., and stopping as soon as the
first satisfiable set has been found. Moreover, any reasesabh procedure will return
in the satisfiable case a Herbrand representation (of softeerfiodel).

Indeed, the idea of searching for a finite model by testinigfeatbility over finite do-
mains of size 12, ... is implemented in our approach and many others (Paradoxd|cS0
Finder [Sla92], Mace [McC94], Mace4 [McC03], SEM [Zha95]tame a few).

4 Implementation

We implemented the transformation described so far withirtteeorem proveDarwin.

In addition to being a full-blown theorem prover for firstder logic without equality,
Darwinis a decision procedure for the satisfiability of functioad clause sets, and thus
is a suitable back-end for our transformation. We call thalsimed system FM3arwin
(for Finite ModelsDarwin).

6 Notice, in particular, thasr(M) contains only positive occurences of equations, if any.



Conceptually FM-Darwin builds onDarwin by adding to it as a front-end an im-
plementation of the transformatian (Section 3.5), and invoking Darwin an (M, d),
ford=1,2, ..., untila model is found. In reality, FNDarwin is built within Darwinand
differs from the conceptual procedure described so faraerfaHowing ways:

1. The search for models of increasing size is builDiarwin’s own restarting mech-
anism. For refutational completend3arwin explores its search space in an iterative-
deepening fashion with respect of certdepthmeasures. The same mechanism is used
in FM-Darwin to restart the search with an increased domain gizel if the input
problem has no models of size

2. FM-Darwin implements some obvious optimizations over the transftionaules

described in Section 3. For instance, the tranformatiols(4) are done in parallel,
depending on the structure of the current literal. Tramsfiion (6) is done implicitly
as part of tranformation (7), when turning equations intatiens. Also, when flattening
a clause, the same variable is used to abstract differenti@@es of a subterm.

3.Because the clause set$M,d) and ¥ (M, d + 1), for anyd, differ only in the their
subsetsp (d) U £(d) and (d + 1) U £(d + 1), respectively, there is no need to re-
generate the constant part, and this is not done.

4. Similarly to SAT solvers based on the DPLL procedueywin has the ability to
learn new (entailed) clauses—emmas—in failed branches of a derivation, which is
helpful to prune search space in later branches [BFTO6sheSaf the learned lemmas
are independent from the current domain size and so can kieccaver to later itera-
tions with larger domain sizes. To do that, each clause(d+ 1) is actuallyguarded
by an additional literaMy standing for the current domain size. In Ah&rwin, lemmas
depending on the current domain sizeand only those, retain the guavty when they
are built, making it easy to eliminate them when moving toribgt sized + 1.

5. Recall from step (7) in the transformation (Section 3.2} #heery function symbol

is turned into a predicate symbol. In our actual impleménaive go one step further
and use a meta modeling approach that can make the final datipeoduced by our
translation more compact, and possibly speed up the seansilh thanks to the way
models are built in the Model Evolution calculus. The idetnisfollowing.

For everyn > 0, instead of generating an+ 1-ary relation symbdR; for eachn-ary
function symbolf € ¢ we use am+ 2-ary relation symboR,, for all n-ary function
symbols. Then, instead of translating a literal of the fdi(xy, ..., Xn) 5 yinto the literal
=R (X1, ..., X, Y), we translate it into the literd®,(f,x,...,X,Y), treatingf as a zero-
arity symbol. The advantage of this translation is thatdadtof needing one totality
axiom per relation symbd®; with f € ¢ we only need one per function symkaoity
(among those found iBiF). ” Thed-totality axioms then take the more general form

Ra(Y, X1, .-+, Xn, 1) V- - VRG (Y, X1, - . . , X, d)

7 Consequently, this translation is actually applied fonagiarity only if there are at least two
symbols of that arity.



where the variablg is meant to be quantified over the (original) function synstiol
>r. Note that the zero-arity symbols representing the orldimaction symbols in the
input are in addition to the domain constants, and of coueserinteract with therf.

6. Like Paradox, FMParwin performs a kind of sort inference in order to improve the
effectiveness of symmetry breaking. Each function andipege symbol of arityn in

> is assigned a type respectively of the fonx ... x §; — S andS x ... X S,
where all sorts§ are initially distinct. Each term in the input clause setdsigned the
result sort of its top symbol. Two sor§ andS; are then identified based on the input
clause set by applying a union-find algorithm with the follogvrules. First, all sorts of
different occurrences of the same variable in a clause argifted; second, the result
sorts of two terms andt in an equalitys~t are identified; third, for each term or atom
of the formf(...,t,...) the argument sort of att’s position is identified with the sort
of t.

All sorts left at the end are assumed to have the same sizewHyi, when a sorted
model is found (with all sorts having some sidg it can be translated into an un-
sorted model by an isomorphic translation of each sort indimgle domain of sizel.
This implies that one can conceptually search for a sortedeinand apply the sym-
metry breaking rules independently for each sort, and atiserdo everything else as
described in the previous section. In addition to generallyroving performance, this
makes the whole procedure less fragile, as the order in vthizleonstants are chosen
for the symmetry breaking rules can have a dramatic impath@search space.

7. Splitting clauses.Paradox and Mace?2 use transformations that, by introduteag
predicate symbols, can split a flat clause with many varglito several flat clauses
with fewer variablesFor instance, a clause of the form

Px,y)vQ(y,2)

whose two subclauses share only the varigldan be transformed into the two clauses

P(x,y) v S(y) -S(y) VQ(y,2)

where the predicate symbol in thennectinditeral S(y) is fresh. This sort of transfor-
mation preserves (un-)satisfiability. Thus, in this examplhere the number of vari-
ables in a clause is reduced by from 3 to 2, procedures basaduiground instantia-
tion of the input clause set may benefit from of having to det #he O(2n?) ground
instances of the new clauses instea®@f®) ground instances of the original clause.

As it happens, reducing of the number of variables per cleuset necessary help-
ful in our case. Since (FMBarwin does not perform an exhaustive ground instantia-
tion of its input clause set, splitting clauses can actuadlyounter-productive because
it forces the system to populate contexts with instance®ohecting literals likeS(y)

8 They are intuitively of a different so& Moreover, by the Herbrand theorem, we can consider
with no loss of generality only interpretations that popelthe sortS precisely with these
constants, and no more.

9 A similar observation was made ift][and exploited beneficially to solve planning problems
by reduction to SAT.



above. Our experiments indicate that this is generally esipe unless the connect-
ing literals do not contain any variables. Still, in contreisDarwin, where in general
clause splitting is only an improvement for ground conmegtiterals, for FMBbarwin
splitting in all cases gives a slight improvemé#ft.

8. Naming subterms.Clauses with deep terms lead to long flat clauses. To avotd tha
deep subterms can be extracted and named by an equationstorde, the clause set

P(h(g(f(x)),y)) Q(f(9(2)))

can be replaced by the clause set

P(ha(xy)) Q(hs(x)) ha(x,y) = h(hi(x),y) ha(x) = g(f (x))

whereh; andh; are fresh function symbols. When carried out repeatediging defini-
tions across the whole clause set, this transformatiodyiel shorter flattened clauses.

We tried some heuristics for when to apply the transforrmatiased on how of-
ten a term occurs in the clause set, and how big the flattenf@uitiba is (i.e., how
much it is possible to save by using the definition). The omigsistent improvement
on TPTP problems was achieved when introducing definitiorg for ground terms.
This solves 16 more problems, 14 of which are Horn. Thusealy only ground terms
are flattened by default with this transformation in FEM&rwin.

5 Experimental Evaluation

5.1 Space Efficiency

Our reduction to clause sets encoding firlitesatisfiability is similar to, and indeed
inspired by, the one in Paradox [CS03]. The most significi#fareénce is, as we men-
tioned, that in Paradox the whole counterpart of our claeser$M.d) is grounded
out, simplified and fed into a SAT solver (Minisat). In our eas (M, d) is fed directly
to a theorem prover capable of deciding the satisfiabilitjuottion-free clause sets.
This has the advantage of often being more space-efficiearadox, as the domain
sized is increased, the number of ground instances of a clausesgegponentially
in the number of variables in the clause [CS03]. In contiasbur transformation no
ground instances of the clause getare produced. The subsetsandz do grow with
the domain sizel; however, the number of clausessn(d) remains constant id while
their length grows only linearly id. The number of clauses in(d), which are all unit,
grows instead quadratically.

As far as preprocessing the input clause set is concerneddbeapproach already
has a significant space advantage over Paradox’s. Thisdmtfar problems that have
models of a relatively large size (more than 6 elementsfeafiinctions arities of 10),
where Paradox’s eager conversion to a propositional pnoidesimply unfeasible be-
cause of the huge size of the resulting formula. A more atew@mparison, however,

101n our experiments on the TPTP (Section 5.2) it helped toeselght additional satisfiable
problems.



FM-Darwin Mace4 Paradox

n |Max.ctxtf Mem Time Time # Vars # Clauses Time
3 14 1 <1 <1 14 0 <1
4 24 1 <1 <1 301 123 <1
5 37 1 <1 <1 3192 534 <1
6 53 1 <1 <1 46749 7919 <1
7 72 1 <1 178 823666 46749 12
8 94 1 51 Fail at size 7 Inconclusive, size7 36
9 119 1 50 Fail at size 6 Inconclusive, sizeb 9.6
10 147 1 566 Fail at size 4 Inconclusive, sizel 36

Table 1. Comparison of Darwin and Paradox on Example 4,rfet 3,...,9. All Time results
are CPU time in seconds. Specific column entriesHbt-Darwin : |Max. ctxt| — maximum
context size needed in derivatiddem — required memory size in megabytes. Column entry for
Mace4 “Fail at sized” — Memory limit of 400 MB exhausted during search for a modéihw
sized. Specific column entries fdParadox # Vars — the number of propositional variables of
the translation into propositional logic for domain size# Clauses— likewise, the number of
propositional clauses; “Inconclusive, sized”: Paradox gave up after the time stated.

needs to take the dynamics of model search into account. By Darwin as the back-
end for our transformation, we are able to keep space corsumgiown also during
search. Being a DPLL-like systefarwin never derives new clausésThe only thing
that grows unbounded in size arwin is thecontex} the data structure representing
the current candidate model for the problem. With funcfiere clause sets the size
of the context depends on the number of possible groundniossaof inputiterals, a
much smaller number than the number of possible groundinstof inputlausesin
addition, our experiments show that the context basicaiyengrows to its worst-case
size.

The different asymptotic behaviours between Brrwin and Paradox can be veri-
fied experimentally with the following simple problem.

Example 4 (Too big to ground)et p be ann-ary predicate symboty, ..., ¢y (distinct)
constants, and, x1, ..., X, (distinct) variables. Then consider the clause set cangist
of the followingn- (n—1)/2+ 1 unit clauses, fon > 0:

p(cy,...,Cn)
SP(XLs - Xim 1y X Xik Ly - Xj— 1, X, X415+ - -5 Xn) forall1<i< j<n

The first clause just introducesconstants. Any (domain-minimal) model has to map
them to at mosh domain elements. The remaining clauses force the condtats
mapped to pairwise distinct domain elements. Thus, thelsstahodel has exactly
elements. This clause set is perhaps the simplest claute sgtcify a domain with
elements. O

We ran the example far= 3,...,10 on FMDarwin, Mace4 and Paradox and ob-
tained the results in Table 1. These results confirm our éapens on FMParwin's

11 Except for lemmas of which, however, it keeps only a fixed nentluring a derivation.



Problem Type Problems FM-Darwin Mace4 Paradox 1.3

Horn  Equality Solved Time Solved Time Solved Time
no no 607 575 3.9 394 3.0 578 0.9
no yes 383 312 43 190 7.8 264 0.4
yes no 65 51 17.5 37 0.2 59 2.1
yes yes 196 136 7.0 181 3.6 182 5.3
all 1251 1074 5.1 802 4.1 1083 1.6

Table 2. Comparison of FMParwin, Mace4, and Paradox 1.3 over all satisfiable TPTP problems,
also grouped based on being Horn and/or containing equ@bityed Problemsgives the number
of problems solved by a configuratiofime the average time used to solve these problems.

greater scalability with respect to space consumption groath of the (propositional)
variables and clauses within Paradox clearly shows exg@mh&ehaviour. In contrast,
Darwin’s contexts grow much more slowly.

5.2 Comparative Evaluation on TPTP

We evaluated the effectiveness of our approach on all thisfiale problems of the

TPTP 3.1.1 in comparison to Paradox 1.3 and Madedll tests were run on Xeon

2.4Ghz machines with 1GB of RAM, with the imposed limits 003®f CPU time and

512MB of RAM. FM-Darwin was run with thegroundedearning option and with an
upper limit of 500 lemmas (see [BFT06b] for more details ogsthoptions), Paradox
and Mace4 in the default configuration.

The results given in Figure 2 show that in terms of solved jemols FM-Darwin
significantly outperforms Mace4. Overall, our system is@inas good as Paradox,
outperforming it over the non-Horn problems in the set. Mprecisely, FMParwin
solves 328 problems that Mace4 cannot solve—Mace4 runsfaume for 169 prob-
lems and out of memory for the remaining ones—and solves @2¢gms that Paradox
can not solve—on all these problems Paradox runs out of mear@ives up. We sam-
pled some of these problems and re-ran Paradox without nyesmdrtime limits, but to
no avail. For problenNLP049- 1, for instance, about 10 million (ground) clauses were
generated for a domain size of 8, consuming about 1 GB of mgrand the underlying
SAT solver could not complete its run within 15 minutes.

In contrast, on all problems FNDarwin never uses more than 200 MB of memory,
and in most cases less than 50 MB. In conclusion then, bothrtifecial problem in
Example 4 and the more realistic problems in the TPTP libsapport our thesis that
FM-Darwin scales better on bigger problems, that is, problems withrgetaset of
ground instances for non-trivial domain sizes.

On the other hand, Paradox and to a lesser extent Mace4 tesalvio problems
faster than FMParwin. We expect, however, that the difference in speed will desze
in later implementations of our system as we refine and imgpoar approach further.

12 sinceDarwin native input language is clausal, we used the eprover 0.8drieert non-clausal
TPTP problems into clause form.



6 Conclusions

Recent years have seen considerable interest in procdducesnputing finite models
of first-order logic specifications. In this paper we overeoaamajor problem with
established, leading methods—embodied by systems likedBarand Mace4—which
do not scale well with the required domain size of the (smsglimodels. These methods
are essentially based on propositional reasoning. In astitwe proposed instead to
reduce model search to a sequence of satisfiability prohieade of function-free first-
order clause sets, and to apply (efficient) theorem provapslae of deciding such
problems.

In this paper we presented our approach in some detail anga@ifgr its correct-
ness. We then provided results from a comparative evalofiour prover, Mace4 and
Paradox, demonstrating that the expected space advantagedeed occur. The eval-
uation also shows that FNdarwin, our initial implementation of our approach built on
top of theDarwin theorem prover, is already competitive with state-of-éinemodel
builders.

We believe that the performance of FMarwin has still considerable room for im-
provement. One main opportunity of improvement is thateuily there is no explicit
symmetry breaking mechanism for function symbols of arigeder than zero. Another
is that the disequality of domain elements is still expljcaxiomatized by ground ax-
ioms over the domain constants. In future work, we intendxglage the possibility
of adapting existing first-order level symmetry breakinghte@iques to our method, and
building-in equality over domain constants into AD&rwin.

While FM-Darwin scales better memory-wise than the other systems condidere
generally struggles like all other finite model-finders wptloblems (such as the TPTP
problemLAT053- 1) whose smallest model is relatively large (20 or more elds)en
Increasing the scalability towards larger domain sizefés tcertainly a main area of
further research.

Acknowledgementdie thank the reviewers for their helpful comments.
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